Skip to main content

Adaptive Monte Carlo Algorithms for Stopped Diffusion

  • Conference paper
Multiscale Methods in Science and Engineering

Summary

We present adaptive algorithms for weak approximation of stopped diffusion using the Monte Carlo Euler method. The goal is to compute an expected value E[g(X(τ), τ)] of a given function g depending on the solution X of an Itô stochastic differential equation and on the first exit time τ from a given domain. The adaptive algorithms are based on an extension of an error expansion with computable leading order term, for the approximation of E[g(X(T))] with a fixed final time T > 0 and diffusion processes X in \(\mathbb{R}\), introduced in [17] using stochastic flows and dual backward solutions. The main steps in the extension to stopped diffusion processes are to use a conditional probability to estimate the first exit time error and introduce difference quotients to approximate the initial data of the dual solutions. Numerical results show that the adaptive algorithms achieve the time discretization error of order N −1 with N adaptive time steps, while the error is of order N −1/2 for a method with N uniform time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abundo M.: Some conditional crossing results of Brownian motion over a piecewise-linear boundary. Statist. Probab. Lett. 58, no. 2, 131–145, (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baldi P.: Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Probab. 23, no. 4, 1644–1670, (1995)

    MATH  MathSciNet  Google Scholar 

  3. Baldi P., Caramellino L. and Iovino M.G.: Pricing general barrier options: a numerical approach using sharp large deviations. Math. Finance 9, no. 4, 293–322, (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bally V. and Talay D.: The law of the Euler scheme for stochastic differential equations, I. Convergence rate of the distribution function. Probab. Theory Related Fields 104, no. 1, 43–60, (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchmann F.M.: Computing exit times with the Euler scheme. Research report no. 2003-02, ETH, (2003).

    Google Scholar 

  6. Fleming W.H. and James M.R.: Asymptotic series and exit time probabilities. Ann. Probab. 20, no. 3, 1369–1384, (1992)

    MathSciNet  MATH  Google Scholar 

  7. Gobet E.: Weak approximation of killed diffusion using Euler schemes. Stochastic Process. Appl. 87, no. 2, 167–197, (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gobet E.: Euler schemes and half-space approximation for the simulation of diffusion in a domain. ESAIM Probab. Statist. 5, 261–297, (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jansons K.M. and Lythe G.D.: Efficient numerical solution of stochastic differential equations using exponential timestepping. J. Stat. Phys. 100, no. 5/6, 1097–1109, (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karatzas I. and Shreve S.E.: Brownian motion and stochastic calculus. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, (1991)

    Google Scholar 

  11. Kloeden P.E. and Platen E.: Numerical solution of stochastic differential equations. Applications of Mathematics, 23. Springer-Verlag, Berlin, (1992)

    Google Scholar 

  12. Lépingle D.: Un schéma d'Euler pour équations différentielles stochastiques réfléchies. C. R. Acad. Sci. Paris Sér. I Math. 316, no. 6, 601–605, (1993)

    MATH  Google Scholar 

  13. Mannella R.: Absorbing boundaries and optimal stopping in a stochastic differential equation. Phys. Lett. A 254, no. 5, 257–262, (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moon K.-S.: Adaptive Algorithms for Deterministic and Stochastic Differential Equations. PhD Thesis, Royal Institute of Technology, Department of Numerical Analysis and Computer Science, Stockholm (2003)

    Google Scholar 

  15. Moon K.-S., Szepessy A., Tempone R. and Zouraris G.E.: Convergence rates for adaptive weak approximation of stochastic differential equations. Accepted in Stoch. Anal. Appl. (2005)

    Google Scholar 

  16. Petersen W.P. and Buchmann F.M.: Solving Dirichlet problems numerically using the Feynman-Kac representation. BIT 43, no. 3, 519–540, (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Szepessy A., Tempone R. and Zouraris G.E.: Adaptive weak approximation of stochastic differential equations. Comm. Pure Appl. Math. 54, no. 10, 1169–1214, (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Talay D. and Tubaro L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8, no. 4, 483–509, (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dzougoutov, A., Moon, KS., von Schwerin, E., Szepessy, A., Tempone, R. (2005). Adaptive Monte Carlo Algorithms for Stopped Diffusion. In: Engquist, B., Runborg, O., Lötstedt, P. (eds) Multiscale Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26444-2_3

Download citation

Publish with us

Policies and ethics