Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alavi JB, Alavi A et al (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62:1074–1078

    PubMed  Google Scholar 

  • Amoroso A, Del Porto F et al (1997) Vascular endothelial growth factor: a key mediator of neoangiogenesis. A review. Eur Rev Med Pharmacol Sci 1:17–25

    PubMed  Google Scholar 

  • Andersen C, Jensen FT (1998) Differences in blood-tumour-barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir (Wien) 140:919–924

    Article  Google Scholar 

  • Aronen HJ, Gazit IE et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  Google Scholar 

  • Aronen HJ, Glass J et al (1995) Echo-planar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiol 36:520–528

    PubMed  Google Scholar 

  • Aronen HJ, Pardo FS et al (2000) High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 6:2189–2200

    PubMed  Google Scholar 

  • Assimakopoulou M, Sotiropoulou-Bonikou G et al (1997) Microvessel density in brain tumors. Anticancer Res 17:4747–4753

    PubMed  Google Scholar 

  • Barbier EL, den Boer JA et al (1999) A model of the dual effect of gadopentetate dimeglumine on dynamic brain MR images. J Magn Reson Imaging 10:242–253

    Article  PubMed  Google Scholar 

  • Bharara S, Goldman CK et al (1996) Vascular endothelial growth factor expression correlates with cerebral edema in meningiomas (meeting abstract). Proc Annu Meet Am Assoc Cancer Res 37:A399

    Google Scholar 

  • Bhujwalla ZM, Artemov D et al (1999) Comparison of vascular volume and permeability for tumors derived from metastatic human breast cancer cells with and without the metastasis suppressor gene nm23. Proceedings of the 7th scientific meeting of the International Society of Magnetic Resonance, Philadelphia, p 146

    Google Scholar 

  • Bitzer M, Opitz H et al (1998) Angiogenesis and brain oedema in intracranial meningiomas: influence of vascular endothelial growth factor. Acta Neurochir (Wien) 140:333–340

    Article  Google Scholar 

  • Boxerman JL, Hamberg LM et al (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–566

    PubMed  Google Scholar 

  • Brasch R, Pham C et al (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 7:68–74

    PubMed  Google Scholar 

  • Brem S, Cotran R et al (1972) Tumour angiogenesis a quantitative method for histological grading. J Natl Cancer Inst 28:347–356

    Google Scholar 

  • Brix G, Semmler W et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    PubMed  Google Scholar 

  • Bruening R, Kwong KK et al (1996) Echo-planar MR determination of relative cerebral blood volume in human brain tumors: T1 versus T2 weighting. AJNR Am J Neuroradiol 17:831–840

    PubMed  Google Scholar 

  • Bullock PR, Mansfield P et al (1991) Dynamic imaging of contrast enhancement in brain tumors. Magn Reson Med 19:293–298

    PubMed  Google Scholar 

  • Calamante F, Gadian DG et al (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473

    Article  PubMed  Google Scholar 

  • Case TA, Durney CH et al (1987) A mathematical model of diamagnetic line broadening in lung tissue and similar heterogeneous systems. J Magn Reson 73:304–314

    Google Scholar 

  • Cha S (2002) Relative recirculation: what does it mean? AJNR Am J Neuroradiol 23:1–2

    PubMed  Google Scholar 

  • Cha S, Law M et al (2000) Peritumoral region: differentiation between primary high-grade neoplasma and solitary metastasis using dynamic contrast-enhanced T2*-weighted echo-planar perfusion MR imaging. Proceeding of the 38th annual meeting of the American Society of Neuroradiology. American Society of Neuroradiology, Atlanta, p 22

    Google Scholar 

  • Cha S, Pierce S et al. (2001) Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol 22:1109–1116

    PubMed  Google Scholar 

  • Cha S, Knopp EA et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echoplanar perfusion MR imaging. Radiology 223:11–29

    PubMed  Google Scholar 

  • Cohen MS, Weisskoff RM (1991) Ultra-fast imaging. Magn Reson Imaging 9:1–37

    Article  PubMed  Google Scholar 

  • Costello PC (1994) Human cerebral microvascular endothelial involvement in neovascularization of malignant glial tumors. Diss Abstr Int [B] 54:5543

    Google Scholar 

  • Daldrup H, Shames DM et al (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR Am J Roentgenol 171:941–949

    PubMed  Google Scholar 

  • Damert A, Ikeda E et al (1997a) Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1-mediated hypoxia-induced transcriptional activation of vascular-endothelial growth factor expression in C6 glioma cells. Biochem J 327:419–423

    PubMed  Google Scholar 

  • Damert A, Machein M et al (1997b) Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57:3860–3864

    PubMed  Google Scholar 

  • Dean BL, Lee C et al (1992) Cerebral hemodynamics and cerebral blood volume: MR assessment using gadolinium contrast agents and T1-weighted Turbo-FLASH imaging. AJNR Am J Neuroradiol 13:39–48

    PubMed  Google Scholar 

  • Dennie J, Mandeville JB et al (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799

    PubMed  Google Scholar 

  • Dewhirst MW, Tso CY et al (1989) Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys 17:91–99

    PubMed  Google Scholar 

  • Dietzmann K, von Bossanyi P et al (1997) Immunohistochemical detection of vascular growth factors in angiomatous and atypical meningiomas, as well as hemangiopericytomas. Pathol Res Pract 193:503–510

    PubMed  Google Scholar 

  • Domingo Z, Rowe G et al. (1998) Role of ischaemia in the genesis of oedema surrounding meningiomas assessed using magnetic resonance imaging and spectroscopy. Br.J Neurosurg. 12:414–418

    Article  PubMed  Google Scholar 

  • Donahue K, Pathak A et al (1999) Utility of acquiring vascular blood volume, permeability and morphology information from dynamic susceptibility contrast agent studies in patients with brain tumors. Proceedings of the 7th scientifi c meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 149

    Google Scholar 

  • Dvorak HF, Brown LF et al (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  Google Scholar 

  • Fisel CR, Ackerman JL et al (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17:336–347

    PubMed  Google Scholar 

  • Flickinger FW, Allison JD et al (1993) Differentiation of benign from malignant breast masses by time-intensity evaluation of contrast enhanced MRI. Magn Reson.Imaging 11:617–620

    Article  PubMed  Google Scholar 

  • Frahm J, Haase A et al (1986) Rapid three-dimensional MR imaging using the FLASH technique. J Comput Assist Tomogr 10:363–368

    PubMed  Google Scholar 

  • Frazzini VI, Cha S et al (1999) Dynamic contrast enhanced T2*-weighted echo-planar perfusion MR imaging of primary CNS lymphoma and glioblastoma multiforme. Proceedings of the 37th annual meeting of the American Society of Neuroradiology. American Society of Neuroradiology, San Diego, p 185

    Google Scholar 

  • Fujii K, Fujita N et al (1992) Neuromas and meningiomas: evaluation of early enhancement with dynamic MR imaging. AJNR Am J Neuroradiol 13:1215–1220

    PubMed  Google Scholar 

  • Fuss M, Wenz F et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48:53–58

    Article  PubMed  Google Scholar 

  • Galbraith SM, Lodge MA et al (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumours: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142

    Article  PubMed  Google Scholar 

  • Gobbel GT, Seilhan TM et al (1992) Cerebrovascular response after interstitial irradiation. Radiat Res 130:236–240

    PubMed  Google Scholar 

  • Goldman CK, Bharara S et al (1997) Brain edema in meningiomas is associated with increased vascular endothelial growth factor expression. Neurosurgery 40:1269–1277

    PubMed  Google Scholar 

  • Gossmann A, Helbich TH et al (2000) Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor. Am J Obstet Gynecol 183:956–963

    Article  PubMed  Google Scholar 

  • Gossman A, Bangard C et al (2002a) Quantitative MRI estimates of microvascular permeability in human brain tumors: detection of reginal heterogeneityh and correlation with histological grade. Proc 10th Intern Magn Reson Med Hawaii

    Google Scholar 

  • Gossmann A, Helbich TH et al (2002b) Dynamic contrastenhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240

    PubMed  Google Scholar 

  • Gowland P, Mansfield P et al (1992) Dynamic studies of gadolinium uptake in brain tumors using inversion-recovery echo-planar imaging. Magn Reson Med 26:241–258

    PubMed  Google Scholar 

  • Griebel J, Mayr NA et al (1997) Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging. J Magn Reson Imaging 7:111–119

    PubMed  Google Scholar 

  • Hacklander T, Hofer M et al (1996a) Cerebral blood volume maps with dynamic contrast-enhanced T1-weighted FLASH imaging: normal values and preliminary clinical results. J Comput Assist Tomogr 20:532–539

    Article  PubMed  Google Scholar 

  • Hacklander T, Reichenbach JR et al (1996b) Measurement of cerebral blood volume via the relaxing effect of low-dose gadopentetate dimeglumine during bolus transit. AJNR Am J Neuroradiol 17:821–830

    PubMed  Google Scholar 

  • Hacklander T, Reichenbach JR et al (1997) Comparison of cerebral blood volume measurements using the T1 and T2* methods in normal human brains and brain tumors. J Comput Assist Tomogr 21:857–866

    Article  PubMed  Google Scholar 

  • Haroon HA, Buckley DL et al (2002a) A comparison of Ktran measurements in gliomas obtaqined with conventional and first pass model. Proc 10th Intern Magn Reson Med Hawaii, p 663

    Google Scholar 

  • Haroon HA, Patankar TA et al (2002b) Relationship between vasculoar endothelial permeability and histological grade in human gliomas using a novel first pass model. Proc 10th Intern Magn Reson Med Hawaii, p 2113

    Google Scholar 

  • Hawighorst H, Engenhart R et al (1997) Intracranial meningeomas: time-and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging 15:423–432

    Article  PubMed  Google Scholar 

  • Hawighorst H, Knapstein PG et al (1998) Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curve for assessment of tumor angiogenesis and patient survival. Cancer Res 58:3598–3602

    PubMed  Google Scholar 

  • Heiland S, Benner T et al (1999) Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brain-barrier. Magn Reson Imaging 17:21–27

    PubMed  Google Scholar 

  • Henderson E, Sykes J et al (1999) Measurement of blood flow, blood volume and capillary permeablility in a canine spontaneous breast tumor model using tow differen contrast agents. Proceedings of the 8th sientific meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 148

    Google Scholar 

  • Hietschold V, Klengel S et al (1993) Simultaneous dynamic measurement of tissue contrast enhancement and perfusion at 0.5 Tesla: method and postprocessing. Proceedings of the 12th scientific meeting of the International Society of Magnetic Resonance in Medicine, New York, p 619

    Google Scholar 

  • Hobbs SK, Homer RJ et al (2002) Image guided protoemics in human gliomas. Proc 10th Ann Meeting Intern Soc Magn Res Med, Hawaii, p 662

    Google Scholar 

  • Jackson A, Zhu XP et al (2000) Parametric mapping of scaled fitting error in dynamic susceptibility contrast enhanced MR perfusion imaging, part II. Clinical application. ISMRM, 8th scientific meeting, Denver, p 619

    Google Scholar 

  • Jackson A, Kassner A et al (2001) Reproducibility of T2* blood volume and vascular tortuosity maps in cerebral gliomas. J Magn Reson Imaging 14:510–516

    Article  PubMed  Google Scholar 

  • Jackson A, Haroon H et al (2002a) Breath-hold perfusion and permeability mapping of hepatic malignancies using magnetic resonance imaging and a first-pass leakage profile model. NMR Biomed 15:164–173

    Article  PubMed  Google Scholar 

  • Jackson A, Kassner A et al (2002b) Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol 23:7–14

    PubMed  Google Scholar 

  • Jackson A, Jayson GC et al (2003) Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol 76:153–162

    Article  PubMed  Google Scholar 

  • Jain R, Gerlowski L (1984) Extravascular transport in normal and tumour tissues. Crit Rev Onc Haematol 5:115–170

    Google Scholar 

  • Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49:189–195; discussion 196

    PubMed  Google Scholar 

  • Johnson G, Wetzel S et al (2002) Simultaneous measurement of blood volume and vascular transfer contstant by first pass pharmacokinetic modeling. Proc 10th Intern Magn Reson Med Hawaii, p 2123

    Google Scholar 

  • Kassner A, Annesley D et al (1999) Abnormalities of the contrast re-circulation phase in cerebral tumours demonstrated using dynamic susceptibility contrast-enhanced MR imaging: a possible marker of vascular tortuosity. Proceedings of the 7th scientific meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 151

    Google Scholar 

  • Kassner A, Annesley DJ et al (2000) Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 11:103–113

    Article  PubMed  Google Scholar 

  • Kassner A, Zhu XP et al (2001) A marker of vascular tortuosity (relative recirculation) in gliomas: comparison with blood volume and tumor grade. ISMRM, 9th scientific meeting, Glasgow, p 2247

    Google Scholar 

  • Klengel S, Hietschold V et al (1994) Simultaneous acquisition of dynamic contrast enhancement and perfusion of normal and pathologic human brain at 0.5 Tesla. Proceedings of the SMR, 2nd annual meeting, San Francisco, p 1467

    Google Scholar 

  • Knopp EA, Cha S et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    PubMed  Google Scholar 

  • Knopp MV, Giesel FL et al (2001) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging 12:301–308

    Article  PubMed  Google Scholar 

  • Kovar DA, Lewis MZ et al (1997) In vivo imaging of extraction fraction of low molecular weight MR contrast agents and perfusion rate in rodent tumors. Magn Reson Med 38:259–268

    PubMed  Google Scholar 

  • Kovar DA, Lewis M et al (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8:1126–1134

    PubMed  Google Scholar 

  • Kuhl CK, Bieling H et al (1997) Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. Radiology 202:87–95

    PubMed  Google Scholar 

  • Kwong KK, Chesler DA et al (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 34:878–887

    PubMed  Google Scholar 

  • Lam WW, Chan KW et al (2001) Pre-operative grading of intracranial glioma. Acta Radiol 42:548–554

    Article  PubMed  Google Scholar 

  • Larsson HB, Stubgaard M et al (1990) Quantitation of bloodbrain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131

    PubMed  Google Scholar 

  • Law M, Cha S et al. (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    PubMed  Google Scholar 

  • Levin JM, Kaufman MJ et al (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and emodynamic pertubation. Magn Reson Med 34:655–663

    PubMed  Google Scholar 

  • Li KL, Jackson A (2003) New hybrid technique for accurate and reproducible quantitation of dynamic contrast-enhanced MRI data. Magn Reson Med 50:1286–1295

    Article  PubMed  Google Scholar 

  • Li KL, Zhu XP (2002) Quantification of plasma volume and permeability using first pass pharmacokinetic models: an assessment of accuracy and precision by Monte Carlo simulation. Proceedings of the 10th scientific meeting of the International Society for Magnetic Resonance in Medicine, Honolulu

    Google Scholar 

  • Li KL, Zhu XP et al (2003) Simultaneous mapping of blood volume and endothelial permeability surface area product in gliomas using iterative analysis of first-pass dynamic contrast enhanced MRI data. Br J Radiol 76:39–50

    Article  PubMed  Google Scholar 

  • Li KL, Zhu XP et al (2000a) Quantitative dynamic contrast-enhanced MRI in tumors. A reproducible technique in the head? A reproducible technique in the breast? ISMRM, 8th scientific meeting, Denver, p 724

    Google Scholar 

  • Li KL, Zhu XP et al (2000b) Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging 12:347–357

    Article  PubMed  Google Scholar 

  • Li TQ, Ostergaard L et al (1998) Simultaneous blood flow, blood volume and permeability mapping using dual-echo spiral imaging: methodology and initial validation with spiral-FAIR. Proceedings of the 6th scientific meeting of the International Society for Magnetic Resonance in Medicine, Sydney, p 1189

    Google Scholar 

  • Long DM (1973) Vascular ultrastructure in human meningiomas and schwannomas. J Neurosurg 38:409–419

    PubMed  Google Scholar 

  • Ludemann L, Hamm B et al (2000) Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPAenhanced magnetic resonance imaging. Magn Reson Imaging 18:1201–1214

    Article  PubMed  Google Scholar 

  • Ludemann L, Grieger W et al (2002) Pharmacokinetic imaging of brain tumors. Proc 10th Intern Magn Reson Med Hawaii, p 2079

    Google Scholar 

  • Lund EL, Spang-Thomsen M et al (1998) Tumor angiogenesis — a new therapeutic target in gliomas. Acta Neurol Scand 97:52–62

    PubMed  Google Scholar 

  • Luthert PJ, Deane BR et al (1986) The vasculature of experimental brain tumours: angiogenesis, vascular pathology, and permeability studies. In: Walker MD, Thomas DGT (eds) Biology of brain tumour. Nijhoff, Boston, pp 197–202

    Google Scholar 

  • Maeda M, Itoh S et al (1993) Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 189:233–238

    PubMed  Google Scholar 

  • Maeda M, Itoh S et al (1994) Vascularity of meningiomas and neuromas: assessment with dynamic susceptibility-contrasst MRF imaging. Am J Roentgenol 163:181–186

    Google Scholar 

  • Martiny-Baron G, Marme D (1995) VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol 6:675–680

    Article  PubMed  Google Scholar 

  • Maxwell M, Naber SP et al (1991) Expression of angiogenic growth factor genes in primary human astrocytomas may contribute to their growth and progression. Cancer Res 51:1345–1351

    PubMed  Google Scholar 

  • Miyati T, Banno T et al (1997) Dual dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 7:230–235

    PubMed  Google Scholar 

  • Nagele T, Petersen D et al (1993) Dynamic contrast enhancement of intracranial tumors with snapshot-FLASH MR imaging. AJNR Am J Neuroradiol 14:89–98

    PubMed  Google Scholar 

  • Ohno K, Pettigrew KD et al (1978) Lower limits of cerebro-vascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299–307

    PubMed  Google Scholar 

  • Ostergaard L, Weisskoff RM et al (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part I. Mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    PubMed  Google Scholar 

  • Ostergaard L, Smith DF et al (1998) Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 18:425–432

    Article  PubMed  Google Scholar 

  • Ostergaard L, Hochberg FH et al (1999) Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg 90:300–305

    PubMed  Google Scholar 

  • Padhani AR, Hayes C et al (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15:143–153

    Article  PubMed  Google Scholar 

  • Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56:607–620

    Article  PubMed  Google Scholar 

  • Pardo FS, Aronen HJ et al. (1994) Functional cerebral imaging in the evaluation and radiotherapeutic treatment planning of patients with malignant glioma. Int J Radiat Oncol Biol Phys 30:663–669

    PubMed  Google Scholar 

  • Parker GJ, Suckling J et al (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging 7:564–574

    PubMed  Google Scholar 

  • Paulson OB, Hertz MM (1983) Tracer kinetics and physiologic modelling. In: Lambrecht RM, Rescigno A (eds) Theory to practice. Lecture notes in biomathematics. Springer, Berlin Heidelberg New York, pp 428–444

    Google Scholar 

  • Perman WH, Gado MH et al (1992) Simultaneous MR acquisition of arterial and brain signal-time curves. Magn Reson Med 28:74–83

    PubMed  Google Scholar 

  • Pietsch T, Valter MM et al (1997) Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol (Berl) 93:109–117

    Article  Google Scholar 

  • Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347

    Article  PubMed  Google Scholar 

  • Provenzale JM, Wang GR et al (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 178:711–716

    PubMed  Google Scholar 

  • Provias J, Claffey K et al (1997) Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery 40:1016–1026

    Article  PubMed  Google Scholar 

  • Reinhold HS, Endrich B (1986) Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 2:111–137

    PubMed  Google Scholar 

  • Roberts HC, Roberts TP et al (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899

    PubMed  Google Scholar 

  • Roberts HC, Roberts TP et al (2001) Correlation of microvascular permeability derived from dynamic contrastenhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol 8:384–391

    Article  PubMed  Google Scholar 

  • Rosen BR, Belliveau JW et al (1989) Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 5:263–281

    PubMed  Google Scholar 

  • Rosen BR, Belliveau JW et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    PubMed  Google Scholar 

  • Rosen BR, Belliveau JW et al (1991) Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 22:293–299

    PubMed  Google Scholar 

  • Rosen BR, Aronen HJ et al (1993) Advances in clinical neuroimaging: functional MR imaging techniques. Radiographics 13:889–896

    PubMed  Google Scholar 

  • Schwarzbauer C, Syha J et al (1993) Quantification of regional blood volumes by rapid T1 mapping. Magn Reson Med 29:709–712

    PubMed  Google Scholar 

  • Shames DM, Kuwatsuru R et al (1993) Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative noninvasive technique. Magn Reson Med 29:616–622

    PubMed  Google Scholar 

  • Siegal T, Rubinstein R et al (1997) Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. J Neurosurg 86:22–27

    PubMed  Google Scholar 

  • Song CW, Lokshina A et al (1984) Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng 31:9–16

    PubMed  Google Scholar 

  • Stack JP, Redmond OM et al (1990) Breast disease: tissue characterization with Gd-DTPA enhancement profiles. Radiology 174:491–494

    PubMed  Google Scholar 

  • St Lawrence KS, Lee TY (1998) An adiabatic approximation to the tissue homogeneity model for water exchange in the brain. I. Theoretical derivation. J Cereb Blood Flow Metab 18:1365–1377

    Article  PubMed  Google Scholar 

  • Stratmann A, Machein MR et al (1997) Anti-angiogenic gene therapy of malignant glioma. Acta Neurochir Suppl (Wien) 68:105–110

    Google Scholar 

  • Strugar J, Rothbart D et al (1994) Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg 81:560–566

    PubMed  Google Scholar 

  • Strugar JG, Criscuolo GR et al (1995) Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 83:682–689

    PubMed  Google Scholar 

  • Su MY, Muhler A et al (1998) Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med 39:259–269

    PubMed  Google Scholar 

  • Sugahara T, Korogi Y et al (1998) Correlation of MR imagingdetermined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171:1479–1486

    PubMed  Google Scholar 

  • Sugahara T, Korogi Y et al (1999a) Contrast enhancement of intracranial lesions: conventional T1-weighted spin-echo versus fast spin-echo MR imaging techniques. AJNR Am J Neuroradiol 20:1554–1559

    PubMed  Google Scholar 

  • Sugahara T, Korogi Y et al (1999b) Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging 10:114–124

    PubMed  Google Scholar 

  • Sugahara T, Korogi Y et al (2001) Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 22:1306–1315

    PubMed  Google Scholar 

  • Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    PubMed  Google Scholar 

  • Tofts P, Berkowitz B et al (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumours using a permeability model. Mag Res Med 33:564–568

    Google Scholar 

  • Tofts PS, Brix G et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  Google Scholar 

  • Uematsu H, Maeda M et al (2000) Vascular permeability: quantitative measurement with double-echo dynamic MR imaging — theory and clinical application. Radiology 214:912–917

    PubMed  Google Scholar 

  • Uematsu H, Maeda M et al (2001) Blood volume of gliomas determined by double-echo dynamic perfusion-weighted MR imaging: a preliminary study. AJNR Am.J Neuroradiol 22:1915–1919

    PubMed  Google Scholar 

  • Van der Sanden BP, Rozijn TH et al (2000) Noninvasive assessment of the functional neovasculature in 9L-glioma growing in rat brain by dynamic 1H magnetic resonance imaging of gadolinium uptake. J Cereb Blood Flow Metab 20:861–870

    PubMed  Google Scholar 

  • Villringer A, Rosen BR et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    PubMed  Google Scholar 

  • Vonken EP, van Osch MJ et al (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43:820–827

    Article  PubMed  Google Scholar 

  • Weisskoff R, Boxerman J et al (1994a) Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. Proceedings of the 2nd scientific meeting of the International Society of Magnetic Resonance in Medicine, San Francisco, p 279

    Google Scholar 

  • Weisskoff RM, Boxerman JL et al (1994b) Simultaneous blood volume and permeability mapping using Gd-based contrast injection. Proceedings of the 2nd scientific meeting of the International Society of Magnetic Resonance in Medicine, San Francisco, p 279

    Google Scholar 

  • Weisskoff RM, Zuo CS et al (1994c) Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med 31:601–610

    PubMed  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–317

    PubMed  Google Scholar 

  • Wenz F, Rempp K et al (1996) Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 166:187–193

    PubMed  Google Scholar 

  • Wismer GL, Boxton RB et al (1988) Susceptibility induced MR line broadening: application to brain iron mapping. J Comput Assist Tomogr 12:259–265

    PubMed  Google Scholar 

  • Worthington BS, Bullock P et al (1991) Clinical experience with contrast enhanced echo-planar imaging of the brain. Magn Reson Med 22:255–258

    PubMed  Google Scholar 

  • Yang S, Wetzel S et al. (2002) Dynamic contrast-enhanced T2*-weighted MR imaging of gliomatosis cerebri. AJNR Am.J Neuroradiol 23:350–355

    PubMed  Google Scholar 

  • Zhu XP, Li KL et al (1997) Parametric error maps in MR perfusion imaging. British chapter of ISMRM, Manchester, UK

    Google Scholar 

  • Zhu X, Hawnaur JM et al (1999) Quantification of relative blood volume and endothelium permeability of breast neoplasm using dynamic MR imaging. Proceedings of the 7th scientific meeting of the International Society of Magnetic Resonance in Medicine, Philadelphia, p 1076

    Google Scholar 

  • Zhu XP, Jackson A et al (2000a) The choroid plexus as an internal reference for quantitative permeability studies in brain tumors. ISMRM, 8th scientific meeting, Denver, 1969

    Google Scholar 

  • Zhu XP, Laing AD et al (2000b) Parametric mapping of scaled fitting error in dynamic susceptibility contrast enhanced MR perfusion imaging, part I. Statistical analysis. ISMRM, 8th scientific meeting, Denver, p 748

    Google Scholar 

  • Zhu XP, Li K. L et al (2000c) Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging 11:575–585

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, X.P., Li, K.L., Jackson, A. (2005). Dynamic Contrast-Enhanced MRI in Cerebral Tumours. In: Jackson, A., Buckley, D.L., Parker, G.J.M. (eds) Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26420-5_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-26420-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42322-5

  • Online ISBN: 978-3-540-26420-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics