Skip to main content

What Is a Quasispecies?

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 299))

Abstract

The concept of the quasispecies as a society formed from a clone of an asexually reproducing organism is reviewed. A broad spectrum of mutants is generated that compete one with another. Eventually a steady state is formed where each mutant type is represented according to its fitness and its formation by mutation. This quasispecies has a defined wild type sequence, which is the weighted average of all genotypes present. The quasispecies concept has been shown to affect the pathway of evolution and has been studied on RNA viruses which have a particularly high mutation rate. They (and possibly the majority of other species) operate close to the error threshold that allows maximum exploration of sequence space while conserving the information content of the genotype. The consequences of the quasispecies concept for the new ‘evolutionary technology’ are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amstutz P, Forrer P, Zahnd C, Pluckthun A (2001) In vitro display techniques: novel developments and applications. Curr Op Biotechnol 12:400–405

    CAS  Google Scholar 

  2. Batschelet E, Domingo E, Weissmann C (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1:27–32

    Article  CAS  PubMed  Google Scholar 

  3. Beaudry AA, Joyce GF (1992) Directed evolution of an RNA enzyme. Science 257:635–641

    CAS  PubMed  Google Scholar 

  4. Beekwilder MJ (1996) Secondary structure of the RNA genome of bacteriophage Qß. Dissertation, University of Leiden, the Netherlands

    Google Scholar 

  5. Benzer S (1959) On the topology of the genetic fine structure. Proc Natl Acad Sci U S A 45:1607–1620

    Google Scholar 

  6. Benzer S (1961) On the topography of the genetic fine structure. Proc Natl Acad Sci U S A 47:403–415

    CAS  Google Scholar 

  7. Beste G, Schmidt FS, Stibora T, Skerra A (1999) Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc Natl Acad Sci U S A 96:1898–1903

    Article  CAS  PubMed  Google Scholar 

  8. Biebricher CK (1983) Darwinian selection of RNA molecules in vitro. Evol Biol 16:1–52

    Google Scholar 

  9. Biebricher CK (1987) Replication and evolution of short-chained RNA species replicated with Qß replicase. Cold Spring Harbor Symp Quant Biol 52:299–306

    CAS  PubMed  Google Scholar 

  10. Biebricher CK, Orgel LE (1973) An RNA that multiplies indefinitely with DNA-dependent RNA polymerase: selection from a random copolymer. Proc Natl Acad Sci U S A 70:934–938

    CAS  PubMed  Google Scholar 

  11. Biebricher CK, Eigen M (1988) Kinetics of RNA replication by Qß replicase. In: Holland JJ, Ahlquist R, Domingo E (eds) RNA genetics. Vol I RNA-directed Virus Replication. CRC Press, Boca Raton FL, pp 1–21

    Google Scholar 

  12. Biebricher CK, Gardiner WC, Eigen M (1985) Kinetics of RNA replication: competition and selection among self-replicating species. Biochemistry 23:6550–6560

    Google Scholar 

  13. Biebricher CK, Gardiner WC, Eigen M (1991) Quantitative analysis of selection and mutation in self-replicating RNA. In: Peliti L (ed) Biologically inspired physics. Plenum Press, New York, pp 317–337

    Google Scholar 

  14. Billeter MA, Dahlberg JE, Goodman HM, Hindley J, Weissmann C (1969) Sequence of the first 175 nucleotides from the 5′ terminus of Qß RNA synthesized in vitro. Nature 224:1083–1086

    CAS  PubMed  Google Scholar 

  15. Breaker RR, Joyce GF (1994) Inventing and improving ribozyme function: rational design versus iterative selection methods. Trends Biotechnol 12:268–275

    Article  CAS  PubMed  Google Scholar 

  16. Breaker RR, Joyce GF (1995) A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem Biol 2:655–660

    Article  CAS  PubMed  Google Scholar 

  17. Breaker RR, Joyce GF (1995) Self-incorporation of coenzymes by ribozymes. J Mol Evol 40:551–558

    Article  CAS  PubMed  Google Scholar 

  18. Brenner S, Lerner RA (1992) Encoded combinatorial chemistry. Proc Natl Acad Sci U S A 89:5381–5383

    CAS  PubMed  Google Scholar 

  19. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137

    Article  CAS  PubMed  Google Scholar 

  20. Carothers JM, Oestreich SC, Davis JH, Szostak JW (2004) Informational complexity and functional activity of RNA structures. J Am Chem Soc 126:5130–5137

    Article  CAS  PubMed  Google Scholar 

  21. Chapman KB, Szostak JW (1995) Isolation of a ribozyme with 5′ → 5′ ligase activity. Chem Biol 2:325–333

    Article  CAS  PubMed  Google Scholar 

  22. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  23. Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98:6895–6900

    Article  CAS  PubMed  Google Scholar 

  24. Dai XC, Demesmaeker A, Joyce GF (1995) Cleavage of an amide bond by a ribozyme. Science 267:237–240

    CAS  PubMed  Google Scholar 

  25. Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744

    Article  CAS  PubMed  Google Scholar 

  26. Domingo E, Biebricher CK, Eigen M, Holland JJ (2001) Quasispecies and RNA virus evolution: principles and consequences. Landes Bioscience, Georgetown TX

    Google Scholar 

  27. Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90:4171–4175

    CAS  PubMed  Google Scholar 

  28. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96:13910–13913

    Article  CAS  PubMed  Google Scholar 

  29. Duarte E, Clarke D, Moya A, Domingo E, Holland J (1992) Rapid fitness losses in mammalian RNA virus clones due to Muller’s ratchet. Proc Natl Acad Sci U S A 89:6015–6019

    CAS  PubMed  Google Scholar 

  30. Dube DK, Black ME, Munir KM, Loeb LA (1993) Selection of new biologically active molecules from random nucleotide sequences. Gene 137:41–47

    Article  CAS  PubMed  Google Scholar 

  31. Dykhuizen DE, Hartl DL (1983) Selection in chemostats. Microbiol Rev 47:150–168

    CAS  PubMed  Google Scholar 

  32. Eigen M (1971) Self-organisation of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  33. Eigen M (1986) The physics of molecular evolution. Chemica scripta 26B:13–26

    CAS  Google Scholar 

  34. Eigen M (2000) Natural selection: a phase transition? Biophys Chem 85:101–123

    Article  CAS  PubMed  Google Scholar 

  35. Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A 99:13374–13376

    Article  CAS  PubMed  Google Scholar 

  36. Eigen M, Biebricher CK (1988) Sequence space and quasispecies distribution. In: Domingo E, Holland JJ, Ahlquist R (eds) RNA Genetics. Vol III. Variability of RNA genomes. CRC Press, Boca Raton FL, pp 211–245

    Google Scholar 

  37. Eigen M, Schuster P (1979) The hypercycle — a principle of natural self-organization. Springer, Berlin New York Heidelberg

    Google Scholar 

  38. Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA: an early gene. Naturwissenschaften 68:282–292

    CAS  PubMed  Google Scholar 

  39. Eigen M, McCaskill J, Schuster P (1989) The molecular quasispecies. Adv Chem Phys 75:149–263

    CAS  Google Scholar 

  40. Ekland EH, Szostak JW, Bartel DP (1995) Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269:364–370

    CAS  PubMed  Google Scholar 

  41. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind to specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  42. Fersht AR (1976) Fidelity of replication of phage ΦX174 by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci U S A 76:4946–4950

    Google Scholar 

  43. Fersht AR (1979) DNA polymerase accuracy and spontaneous mutation rates frequency of purine-purine purine-pyrimidine and pyrimidine-purine mismatches during replication. Proc Natl Acad Sci U S A 76:4946–4950

    CAS  PubMed  Google Scholar 

  44. Fersht AR (1987) Dissection of the structure and activity of the tyrosyl-tRNA-synthetase by site-directed mutagenesis. Biochemistry 26:8031–8037

    CAS  PubMed  Google Scholar 

  45. Fersht AR, Knill-Jones JW (1981) DNA polymerase accuracy and spontaneous mutation rates: frequencies of purine:purine purine:pyrimidine and pyrimidine:pyrimidine mismatches during DNA replication. Proc Natl Acad Sci U S A 78:4251–4255

    CAS  PubMed  Google Scholar 

  46. Forrer P, Jung S, Pluckthun A (1999) Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr Op Struct Biol 9:514–520

    Article  CAS  Google Scholar 

  47. Forrest S (1993) Genetic algorithms: principles of natural selection applied to computation. Science 261:872–878

    CAS  PubMed  Google Scholar 

  48. Forster AC, Symons RH (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49:211–220

    Article  CAS  PubMed  Google Scholar 

  49. Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution revisited. Palaeobiol 3:115–151

    Google Scholar 

  50. Grande-Pérez A, Sierra S, Castro MG, Domingo E, Lowenstein PR (2002) Molecular indetermination in the transition to error catastrophe: systematic elimination of lymphocytic choriomeningitis virus through mutagenesis does not correlate linearly with large increases in mutant spectrum complexity. Proc Natl Acad Sci U S A 99:12938–12943

    PubMed  Google Scholar 

  51. Griffiths AD (1993) Building an in vitro immune system — human antibodies without immunization from phage display libraries. Ann Biol Clin 51:554–554

    Google Scholar 

  52. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KE, Richman DD, Gingeras TR (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A 87:1874–1878

    CAS  PubMed  Google Scholar 

  53. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    CAS  PubMed  Google Scholar 

  54. Hamming RW (1980) Coding and information theory. Prentice Hall Inc. Englewood Cliffs NJ

    Google Scholar 

  55. Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942

    Article  CAS  PubMed  Google Scholar 

  56. Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Plückthun A (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci U S A 95:14130–14135

    Article  CAS  PubMed  Google Scholar 

  57. Hoffmüller U, Knaute T, Hahn M, Höhne W, Schneider-Mergener J, Kramer A (2000) Evolutionary transition pathways for changing peptide ligand specificity and structure. EMBO J 19:4866–4874

    PubMed  Google Scholar 

  58. Horwitz MS, Loeb LA (1986) Promoters selected from random DNA sequences. Proc Natl Acad Sci U S A 83:7405–7409

    CAS  PubMed  Google Scholar 

  59. Horwitz MS, Loeb LA (1988) DNA sequences of random origin as probes of Escherichia coli promoter architecture. J Biol Chem 263:14724–14731

    CAS  PubMed  Google Scholar 

  60. Horwitz MS, Dube DK, Loeb LA (1989) Selection of new biological activities from random nucleotide sequences: evolutionary and practical considerations. Genome 31:112–117

    CAS  PubMed  Google Scholar 

  61. Illanga-Sekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl RNA synthesis catalyzed by an RNA. Science 267:643–647

    CAS  Google Scholar 

  62. Jenkins GM, Worobey M, Woelk CH, Holmes EC (2001) Evidence for the non-quasispecies evolution of RNA viruses. Mol Biol Evol 18:987–994

    CAS  PubMed  Google Scholar 

  63. Jiang L, Suri AK, Fiala R, Patel DJ (1996) Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chem Biol 4:35–50

    Google Scholar 

  64. Jones BL, Enns RH, Rangnekar SS (1976) On the theory of selection of coupled macromolecular systems. Bull Math Biol 38:15–28

    Article  Google Scholar 

  65. Kauffman SA (1992) Applied molecular evolution. J Theor Biol 157:1–7

    CAS  PubMed  Google Scholar 

  66. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  67. Klovins J, Tsareva NA, de Smit MH, Berzins V, van Duin J (1997) Rapid evolution of translational control mechanisms in RNA genomes. J Mol Biol 265:372–384

    Article  CAS  PubMed  Google Scholar 

  68. Kramer A, Keitel T, Winkler K, Stöcklein W, Höhne W, Schneider-Mergener J (1999) Molecular basis for the binding promiscuity of an anti-p24 (HIV) monoclonal antibody. Cell 91:799–809

    Google Scholar 

  69. Kwoh DY, Davis GR, Whitfield KM, Chapelle H, DiMichele L, Gingeras TR (1989) Transcription-based amplification system and detection of amplified immunode-ficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci U S A 86:1173–1177

    CAS  PubMed  Google Scholar 

  70. Lake JA (1987) Prokaryotes and archaebacteria are not monophyletic: Rateinvariant analysis of rRNA genes indicate that eukaryotes and eocytes form a monophyletic taxon. Cold Spring Harbor Symp Quant Biol 52:839–846

    CAS  PubMed  Google Scholar 

  71. Lato SM, Boles AR, Ellington AD (1995) In vitro selection of RNA lectins — using combinatorial chemistry to interpret ribozyme evolution. Chem Biol 2:291–303

    Article  CAS  PubMed  Google Scholar 

  72. Lauhon C, Szostak J (1993) In vitro selection of RNA molecules that specifically bind riboflavin. FASEB J 7:A1087

    Google Scholar 

  73. Lerner RA, Tramontaur A (1988) Catalytic Antibodies. Sci Am 258:42–50

    Google Scholar 

  74. Lerner RA, Benkovic SJ, Schultz PG (1991) At the crossroads of chemistry and immunology: catalytic antibodies. Science 252:659–667

    CAS  PubMed  Google Scholar 

  75. Leatherbarrow RJ, Fersht AR (1986) Protein engineering. Protein Eng 1:7–16

    CAS  PubMed  Google Scholar 

  76. Lipovsek D, Plückthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Meth 290:51–67

    Article  CAS  Google Scholar 

  77. Liscamp RMJ (1994) Opportunities of new chemical libraries. Angew Chem Int Ed Engl 33:633–636

    Google Scholar 

  78. Loeb LA, Kunkel TA (1982) Fidelity of DNA synthesis. Annu Rev Biochem 51:428–497

    Article  Google Scholar 

  79. Loeb LA, Weymouth LA, Kunkel TA, Gopinathan KP, Beckman RA, Dube DK (1978) On the fidelity of DNA replication. Cold Spring Harbor Symp Quant Biol 43:921–927

    Google Scholar 

  80. Loeb LA, Essigman JM, Kazazi F, Zhang F, Rose KD, Mullins JI (1999) Lethal mutagenesis of HIV with mutagenic nucleotide analogs. Proc Natl Acad Sci U S A 96:1492–1497

    Article  CAS  PubMed  Google Scholar 

  81. Lohse PA, Szostak JW (1996) Ribozyme-catalyzed amino acid transfer reactions. Nature 381:442–444

    Article  CAS  PubMed  Google Scholar 

  82. Lorsch JR, Szostak JW (1995) In vitro evolution of polynucleotide kinase ribozymes. FASEB J 9:A1422

    Google Scholar 

  83. Lowe G (1995) Combinatorial chemistry. Chem Soc Rev 24:309–317

    Article  CAS  Google Scholar 

  84. Luria SE, Delbrueck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:486–491

    Google Scholar 

  85. Maynard Smith J (1989) Evolutionary genetics. Oxford University Press, Oxford

    Google Scholar 

  86. Mills DR, Peterson RL, Spiegelman S (1967) An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc Natl Acad Sci U S A 58:217–224

    CAS  PubMed  Google Scholar 

  87. Muller HJ (1964) The relation or recombination to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  88. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273

    CAS  PubMed  Google Scholar 

  89. Munir KM, French DC, Loeb LA (1993) Thymidine kinase mutants obtained by random sequence selection. Proc Natl Acad Sci U S A 90:4012–4016

    CAS  PubMed  Google Scholar 

  90. Nakamura GR, Reynolds ME, Chen YM, Starovasnik MA, Lowman HB (2002) Stable “zeta” peptides that act as potent antagonists of the high affinity IgE receptor. Proc Natl Acad Sci U S A 99:1303–1308

    CAS  PubMed  Google Scholar 

  91. Niewlandt P, Decker D, Gold L (1995) In vitro selection of RNA ligands to substances. Biochemistry 34:5651–5659

    Google Scholar 

  92. Nixon AE, Firestine SM (2000) Rational and “irrational” design of proteins and their use in biotechnology. IUBMB Life 49:181–187

    Article  CAS  PubMed  Google Scholar 

  93. Novick A, Szilard L (1950) Experiments with the chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U SA 36:708–719

    CAS  Google Scholar 

  94. Olsthoorn RCL, van Duin J (1996) Evolutionary reconstruction of a hairpin deleted from the genome of an RNA virus. Proc Natl Acad Sci U S A 93:12256–12261

    Article  CAS  PubMed  Google Scholar 

  95. Olsthoorn RCL, Licis N, van Duin J (1994) Leeway and constraints in the forced evolution of a regulatory RNA helix. EMBO J 13:2660–2668

    CAS  PubMed  Google Scholar 

  96. Ortín J, Nájera R, Lopez C, Davila M, Domingo E (1980) Genetic variability of Hong Kong (H3N2) influenza viruses: spontaneous mutations and their location in the viral genome. Gene 11:319–331

    PubMed  Google Scholar 

  97. Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors — affinity purification of target genes. Gene 73:305–318

    Article  CAS  PubMed  Google Scholar 

  98. Posner B, Smiley J, Lee I, Benkovic S (1994) Catalytic antibodies: Perusing combinatorial libraries. Trends Biochem Sci 19:145–150

    Article  CAS  PubMed  Google Scholar 

  99. Rechenberg I (1973) Evolutionsstrategie. Problemata Formann-Holzboog, Stuttgart-Bad Cannstatt

    Google Scholar 

  100. Reineke U, Kramer A, Schneider-Morgener J (1999) Antigen sequence-and library-based mapping of linear and discontinuous protein-protein interaction sites by spot synthesis. Curr Top Microbiol Immunol 243:23–36

    CAS  PubMed  Google Scholar 

  101. Rohde N, Daum H, Biebricher CK (1995) The mutant distribution of an RNA species replicated by Qß replicase. J Mol Biol 249:754–762

    Article  CAS  PubMed  Google Scholar 

  102. Russell AJ, Fersht AR (1987) Rational modification of enzyme catalysis by engineering surface charge. Nature 328:496–500

    Article  CAS  PubMed  Google Scholar 

  103. Sanger R, Brownlee GG, Barrell BG (1965) A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol 13:378–398

    Google Scholar 

  104. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  105. Schultz PG (1989) Catalytic antibodies. Angew Chem Int Ed 28:1283–1295

    Google Scholar 

  106. Schultz PG, Lerner RA (1993) Antibody catalysis of difficult chemical transformations. Acc Chem Res 26:391–395

    Article  CAS  Google Scholar 

  107. Schuster P (1986) The physical basis of molecular evolution. Chemica scripta 26B:27–41

    CAS  Google Scholar 

  108. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitopic library. Science 249:386–390

    CAS  PubMed  Google Scholar 

  109. Sierra S, Davila M, Lowenstein PR, Domingo E (2000) Response of foot-and-mouth-disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. J Virol 74:8316–8323

    Article  CAS  PubMed  Google Scholar 

  110. Smith GP, Scott JK (1993) Libraries of peptides and proteins displayed on filamentous phage. Meth Enzymol 217:228–257

    CAS  PubMed  Google Scholar 

  111. Spiegelman S, Haruna, Holland IB, Beaudreau G, Mills DR (1965) The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A 54:919–927

    CAS  PubMed  Google Scholar 

  112. Stiege W, Erdmann VA (1995) The potentials of the in vitro biosynthesis system. J Biotechnol 41:81–90

    Article  CAS  PubMed  Google Scholar 

  113. Swetina J, Schuster P (1982) Self-replication with errors. A model for polynucleotide replication. Biophys Chem 16:329–345

    Article  CAS  PubMed  Google Scholar 

  114. Tarazona P (1992) Error thresholds for molecular quasispecies as phase transitions: from single landscapes to spin-glass models. Phys Rev E 45:6038–6050

    CAS  Google Scholar 

  115. Thompson CL, McBride JL (1974) On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math Biosci 21:127–142

    Google Scholar 

  116. Tobin MB, Gustafsson C, Huisman GW (2000) Directed evolution: the ‘rational’ basis for ‘irrational’ design. Curr Op Struct Biol 10:421–427

    Article  CAS  Google Scholar 

  117. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  118. Van Meerten D, Girard G, van Duin J (2001) Translational control by delayed RNA folding: identification of the kinetic trap. RNA 7:483–494

    PubMed  Google Scholar 

  119. Wallis MG, von Ahsen U, Schroeder R, Famulok M (1995) A novel RNA structure for neomycin recognition. Chem Biol 2:543–552

    Article  CAS  PubMed  Google Scholar 

  120. Wecker M, Smith D, Gold L (1996) In vitro selection of a novel catalytic RNA — characterization of a sulfur alkylation reaction and interaction with a small peptide. RNA 2:982–994

    CAS  PubMed  Google Scholar 

  121. Wettich A, Biebricher CK (2001) RNA species that replicate with DNA-dependent RNA polymerase from Escherichia coli. Biochemistry 40:3308–3315

    Article  CAS  PubMed  Google Scholar 

  122. Wilson C, Szostak JW (1995) In vitro evolution of a self-alkylating ribozyme. Nature 374:777–782

    Article  CAS  PubMed  Google Scholar 

  123. Wilson DS, Keefe AD, Szostak JW (2001) The use of mRNA display to select high-affinity protein-binding peptides. Proc Natl Acad Sci U S A 98:3750–3755

    CAS  PubMed  Google Scholar 

  124. Woese CR, Fox GE (1977) The concept of cellular evolution. J Mol Evol 10:1–6

    CAS  PubMed  Google Scholar 

  125. Zaug AJ, Cech TR (1986) The intervening sequence RNA of Tetrahymena is an enzyme. Science 231:470–475

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biebricher, C.K., Eigen, M. (2006). What Is a Quasispecies?. In: Domingo, E. (eds) Quasispecies: Concept and Implications for Virology. Current Topics in Microbiology and Immunology, vol 299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26397-7_1

Download citation

Publish with us

Policies and ethics