**Find out how to access preview-only content**

# A remark on multiplier methods for nonlinear programming

- M. Cirinà
- … show all 1 hide

## Abstract

This paper is concerned with certain aspects of multiplier methods where the solution of a constrained minimization problem is obtained by means of a sequence of unconstrained minimizations of an augmented Lagrangian L(x,y,r), followed each by an iteration on the La — grange multiplier vector y. In spite of the growing recognition that multiplier methods are among the most effective constrained minimization methods, the value to be given to the penalty parameter r does not seem yet to have received enough attention. This paper — related to work done recently by Bertsekas and Polyak — contains a result in such direction, namely the following one: if G and Q are given matrices and Q is positive definite on the kernel of G, then it is produced r* such that for all r > r*, Q + r G^{T}G is positive definite on the whole space. Also we prove a lemma — related to a known one — about Hilbert space operators with uniformly bounded inverses, that may be useful in extending the result above to more general situations. To test the computational value of the estimate r* arrived at here, a computer program is being tested and some numerical results are reported.

- Arrow, K. J., Solow, R. M. Gradient Methods for Constrained Maxima with Weakened Assumptions. In: Arrow, K., Hurwicz, L., Uzawa, H. eds. (1958) Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford
- Asaadi, J. (1973) A Computational Comparison of some Non-linear Programs. Math. Prog. 4: pp. 144-154
- Bertsekas D. P., "On Penalty and Multiplier Methods for Constrained Minimization", SIAM J. on Control, to appear.
- Fiacco, A. V., McCormick, G. P. (1968) Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley, New York
- Fletcher R., "A class of methods for nonlinear programming with termination and convergence properties", in Integer and Nonlinear Programming, J. Abadie (editor), North-Holland, 1970.
- Hestenes, M. R. (1969) Multiplier and Gradient Methods. Journal of Optimi zation Theory and Applications 4: pp. 303-320
- Luenberger D.G., "Introduction to Linear and Nonlinear Programming", Addison-Wesley, 1973.
- Polyak, B. T. (1971) The Convergence Rate of the Penalty Function Method. Zh. Vychisl. Mat. Mat. Fiz. 11: pp. 3-11
- Powell M.J.D., "A Method for Nonlinear Constraints in Minimization Problems", in Optimization, R. Fletcher (ed.), Academic Press, pp. 283–298.
- Rockafellar R.T., "Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming", SIAM J. Control, Vol. 12, No. 2, 1974.
- Rockafellar R.T., "New applications of duality in convex programming", written version of talk at 7th International Symposium on Math. Programming (the Hague, 1970) and elsewhere, published in the Proc. of the 4th Conference on Probability (Brasov, Romania, 1971).

- Title
- A remark on multiplier methods for nonlinear programming
- Book Title
- Optimization Techniques Modeling and Optimization in the Service of Man Part 2
- Book Subtitle
- Proceedings, 7th IFIP Conference Nice, September 8–12, 1975
- Pages
- pp 283-292
- Copyright
- 1976
- DOI
- 10.1007/3-540-07623-9_293
- Print ISBN
- 978-3-540-07623-0
- Online ISBN
- 978-3-540-38150-1
- Series Title
- Lecture Notes in Computer Science
- Series Volume
- 41
- Series ISSN
- 0302-9743
- Publisher
- Springer Berlin Heidelberg
- Copyright Holder
- Springer-Verlag
- Additional Links

- Topics
- Industry Sectors
- eBook Packages

### Continue reading...

To view the rest of this content please follow the download PDF link above.