Skip to main content

Vitiligo

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronoff S (1965) Catalase: kinetics of photo-oxidation. Science 150: 72–73

    PubMed  Google Scholar 

  • Austin LM, Boissy RE (1995) Mammalian tyrosinase related protein-1 is recognised by autoantibodies from vitiliginous Smyth chickens. Am J Pathol 146:1529–1541

    PubMed  Google Scholar 

  • Baharav E, Merimski O, Shoenfeld Y, Zigelman R, Gilbrud B, Yecheskel G, Youinou P, Fishman P (1996) Tyrosinase as an autoantigen in patients with vitiligo. Clin Exp Immunol 105: 84–88

    Article  PubMed  Google Scholar 

  • Beazley WD, Gaze DC, Panske A, Panzig E, Schallreuter KU (1999) Serum selenium levels and glutathione peroxidase activities in vitiligo. Br J Dermatol 141: 301–303

    Article  PubMed  Google Scholar 

  • Bhawan J, Bhutani LK (1983) Keratinocyte damage in vitiligo. J Cutaneous Path 10: 207–212

    Google Scholar 

  • Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiences. J Inherit Metab Dis 19: 8–14

    Article  PubMed  Google Scholar 

  • Boissy R, Liu YY, Medrano EE, Nordlund JJ (1991) Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalisation in long term cultures of melanocytes from vitiligo patients. J Invest Dermatol 97: 395–404

    Article  PubMed  Google Scholar 

  • Boissy RE, Sakai C, Zhao H, Kobayashi T, Hearing VJ (1998) Human tyrosinase related protein-1 (TRP-1). Exp Dermatol 7: 198–204

    Article  PubMed  Google Scholar 

  • Boissy RE, Manga P (2004) On the etiology of contact/occupational vitiligo. Pigment Cell Res 17: 208–14

    Article  PubMed  Google Scholar 

  • Calanchini-Postizzi E, Frenk E (1987) Long-term actinic damage in sun-exposed vitiligo and normally pigmented skin. Dermatologica 174: 266–71

    PubMed  Google Scholar 

  • Casp CB, She JX, McCormack WT (2002) Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 15: 62–6

    Article  PubMed  Google Scholar 

  • Cui J, R Harning, M Henn, J-C Bystryn (1992) Identification of pigment cells antigens defined by vitiligo antibodies. J Invest Dermatol 98: 162–165

    Article  PubMed  Google Scholar 

  • Cui J, Arita Y, Bystryn J-C (1993) Cytolytic antibodies to melanocytes in vitiligo. J Invest Dermatol 100: 812–815

    Article  PubMed  Google Scholar 

  • Cui J, Chen D, Misfeldt ML, Swinfard RW, Bystryn J-C (1995) Antimelanoma antibodies in swine with spontaneously regressing melanoma. Pigment Cell Res 8: 60–63

    PubMed  Google Scholar 

  • Darr D, Fridovich I (1994) Free radicals in cutaneous biology. J Invest Dermatol 102: 671–675

    Article  PubMed  Google Scholar 

  • Davis MD, Ribeiro P, Tipper J, Kaufman S (1992) 7-Tetrahydrobiopterin, a naturally occurring analogue of tetrahydrobiopterin, is a cofactor for and a potential inhibitor of the aromatic amino acid hydrolases. Proc Natl Acad Sci USA 89: 10108–10113

    Google Scholar 

  • De la Fuente-Fernandez R (1997) Mutations in GTP-cyclohydrolase I gene and vitiligo. Lancet 350: 640

    Article  Google Scholar 

  • Diehle J (2004) Med Thesis, University of Hamburg, Germany

    Google Scholar 

  • Galbraith GM, Miller D, Emerson DL (1988) Western blot analysis of serum antibody reactivity with human melanoma cell antigens in alopecia areata and vitiligo. Clin Immunol Immunopathol 48: 317–324

    Article  PubMed  Google Scholar 

  • Grimes PE, Sevall JS, Vojdani A (1996) Cytomegalovirus DNA identified in skin biopsy specimens of patients with vitiligo. J Am Acad Dermatol 1996; 35:21–26

    Article  PubMed  Google Scholar 

  • Grimes PE, Elkadi T, Sanders, J (1999) Epstein-Barr virus infection in patients with vitiligo (abstr). J Invest Dermatol 112: 604

    Google Scholar 

  • Halaban R, Moellmann GE (1990) Murine and human b-locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc Nat Acad Sci USA 1990 87:4809–4813

    PubMed  Google Scholar 

  • Hamzavi I, Jain H, Mclean D, Shapiro J, Zeng H, Lui H (2004) Parametric modelling of narrowband UVB phototherapy for vitiligo using a novel quantitative tool: the Vitiligo Area Scoring Index. Arch Dermatol 140: 677–83

    Article  PubMed  Google Scholar 

  • Harning R, Cui J, Bystryn J-C (1991) Relation between the incidence and level of pigment cell antibodies and disease activity in vitiligo. J Invest Dermatol 97: 1078–1080

    Article  PubMed  Google Scholar 

  • Hasse S, Gibbons NC, Rokos H, Marles LK, Schallreuter KU (2004) Perturbed 6-tetrahydrobi-opterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for H2O2 stress. J Invest Dermatol 122: 307–313

    Article  PubMed  Google Scholar 

  • Herrath MG, Oldstone MB (1996) Virus induced autoimmune disease. Curr Opin Immunol 8:878–885

    Article  PubMed  Google Scholar 

  • Jimbow K, Chen H, Park JS, Thomas P (2001) Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase related protein in vitiligo. Br J Dermatol 144: 55–65

    PubMed  Google Scholar 

  • Kemp EH, Gawkrodger DJ, MacNeil S, Watson PF, Weetman AP (1997a) Detection of tyrosinase autoantibodies in vitiligo patients using 35S-labelled recombinant human tyrosinase in a radioimmunoassay. J Invest Dermatol 109: 69–73

    Article  PubMed  Google Scholar 

  • Kemp EH, Gawkrodger DJ, Watson PF, Weetman AP (1997b) Immunoprecipitation of melanogenic enzyme autoantigens with vitiligo sera: evidence for cross-reactive autoantibodies to tyrosinase and tyrosinase-related protein-2 (TRP-2). Clin Exp Immunol 109:495–500

    Article  PubMed  Google Scholar 

  • Kemp EH, Waterman, Gawkrodger DJ, Watson PF, Weetman AP (1998) Autoantibodies to tyrosinase-related protein-1 (TRP-1) detected in the sera of vitiligo patients using a quantitative radiobinding assay. Br J Dermatol 139: 798–805

    Article  PubMed  Google Scholar 

  • Kemp EH, Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP (1999) Identification of epitopes on tyrosinase which are recognised by autoantibodies from patients with vitiligo. J Invest Dermatol 113: 267–271

    Article  PubMed  Google Scholar 

  • Kwon BS (1993) Pigmentation genes: the tyrosinase gene family and the pmell7 gene family. J Invest Dermatol 100: 134S–140S

    Article  PubMed  Google Scholar 

  • Laihia JK, Jansen CT (1997) Upregulation of human epidermal Langerhans cell B7-1 and B7-2 costimulatory molecules in vivo by solar stimulating irradiation. Eur J Immunol 27:984–989

    PubMed  Google Scholar 

  • Laskin JD, Piccinini LA (1986) Tyrosinase isozyme heterogeneity in differentiating B16/C3 melanoma. J Biol Chem 261: 16626–16635

    PubMed  Google Scholar 

  • LePoole IC, Das PK, van den Wijngaard RM, Bos JD, Westerhof W (1993a) Review of the etiopathomechanism of vitiligo: A convergence theory. Exp Dermatol 2: 146–153

    Google Scholar 

  • LePoole IC, van dan Wijngaard RM, Westerhof W, Dutrieux RP, Das PK (1993b) Presence or absence of melanocytes in vitiligo lesions: an immunohistochemical investigation. J Invest Dermatol 100: 816–822

    Article  PubMed  Google Scholar 

  • LePoole C, Wijngaard Van den, Smit NPM, Oosting J, Westerhof W, Pavel S (1994) Catechol-O-methyl transferase in vitiligo. Arch Dermatol Res 286: 81–86

    Article  PubMed  Google Scholar 

  • Le Poole IC, Wankowicz-Kalinska A, van der Wijngaard RMJGJ, Nickoloff BJ, Das PK (2004) Autoimmune aspects of depigmentation in vitiligo. J Invest Dermatol Symp Proc 9: 68–72

    Article  Google Scholar 

  • Manga P, Sato K, Ye L, Beerman F, Lamoreux ML, Orlow SJ (2000). Mutational analysis of the modulation of tyrosinase by tyrosinase related proteins 1 and 2 in vitro. J Pigment Cell Res 13: 364–374

    Article  Google Scholar 

  • Maresca V, Roccella M, Roccella F, Camera E, Del Porto G, Passi S, Grammatico P, Picardo M (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109: 310–313

    Article  PubMed  Google Scholar 

  • Marks DB, Marks AD, Smith CM (1996) Oxygen metabolism and oxygen toxicity. In: Basic Medical Biochemistry: A Clinical Approach. Baltimore: Williams and Wilkins 327–340

    Google Scholar 

  • Marles LK, Peters EM, Tobin DJ, Hibberts NA, Schallreuter KU (2003) Tyrosine hydroxylase isoenzyme I is present in human melanosomes: a possible novel function in pigmentation. Exp Dermatol 12: 61–70

    PubMed  Google Scholar 

  • Medrano EE and Nordlund JJ (1990) Successful culture of adult human melanocytes obtained from normal and vitiligo donors. J Invest Dermatol 95: 441–445

    PubMed  Google Scholar 

  • Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ, Lerner AB (1982) Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. J Invest Dermatol 79: 321–330

    Article  PubMed  Google Scholar 

  • Moretti S, Spallanzani A, Amato L et al. (2002) New insights into the pathogenesis of vitilgo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 15: 87–92

    Article  PubMed  Google Scholar 

  • Morrone A, Picardo M, De Luca C, Terminali O, Passi S, Ippolito F (1992) Catecholamines and vitiligo. Pigment Cell Res 5: 58–62

    PubMed  Google Scholar 

  • Morse SS, Sakaguchi N, Sakaguchi S (1999) Virus and autoimmunity: induction of autoimmune disease in mice by mouse T-lymphotropic virus (MTLV) destroying CD4 and T cells. J Immunol 162: 5309–5316

    PubMed  Google Scholar 

  • Naughton GK, Eisinger M, Bystryn J-C (1983a) Antibodies to normal human melanocytes in vitiligo. J Exp Med 158: 246–251

    PubMed  Google Scholar 

  • Naughton GK, Eisinger M, Bystryn J-C (1983b) Detection of antibodies to melanocytes in vitiligo by specific immunoprecipitation. J Invest Dermatol 81: 540–542

    Article  PubMed  Google Scholar 

  • Naughton GK, Reggiardo MD, Bystryn J-C (1986a) Correlation between vitiligo antibodies and extent of depigmentation in vitiligo. J Am Acad Dermatol 15: 978–981

    PubMed  Google Scholar 

  • Naughton GK, Mahaffey M, Bystryn J-C (1986b) Antibodies to surface antigens of pigment cells in animals with vitiligo. Proc Soc Exp Biol Med 181: 423–426

    PubMed  Google Scholar 

  • Nordlund JJ, Ortonne JP (1992) Vitiligo and depigmentation. Curr Prob Dermatol 4: 3–30

    Article  Google Scholar 

  • Nordlund JJ, Boissy RE, Hearing VJ, King RA, Ortonne JP (eds) (1998) The pigmentary system. Physiology and Pathophysiology. Oxford University Press, Oxford

    Google Scholar 

  • Norris DA, Kissinger RM, Naughton GK, Bystryn J-C (1998) Evidence for immunologic mechanisms in human vitiligo: patients’ sera induce damage to human melanocytes in vitro by complement-mediated damage and antibody-dependent cellular toxicity. J Invest Dermatol 90: 783–789

    Article  Google Scholar 

  • Okamoto T, Irie RF, Fujii S, Huang SKS, Nizze AJ, Morton DL, Hoon DSB (1998) Anti-tyrosinase related protein-2 immune response in vitiligo patients and melanoma patients receiving active-specific immunotherapy. J Invest Dermatol 111: 1034–1039

    Article  PubMed  Google Scholar 

  • Orlow SJ, Boissy RE, Moran D, Pifka-Hinst S (1993) Subcellular distribution of tyrosinase and tyrosinase related protein 1: Implications for melanosomal biogenesis. J Invest Dermatol 100:55–64

    Article  PubMed  Google Scholar 

  • Ortonne JP, Bose SK (1993) Vitiligo: Where do we stand? Pigment Cell Res 8: 61–72

    Google Scholar 

  • Rokos H, Beazley WD, Schallreuter KU (2002) Oxidative stress in vitilgo: photo-oxidation of pterins produces H2O2 and pterin-6-carboxylic acid. Biochem Biophys Res Commun 292:805–11

    Article  PubMed  Google Scholar 

  • Rokos H, Moore J, Hasse S, Gillbro JM, Wood JM, Schallreuter KU (2004) In vivo Fluorescence Excitation Spectroscopy and in vivo FT-Raman Spectroscopy in human skin: Evidence of H2O2 oxidation of epidermal albumin in patients with vitiligo. J Raman Spectrosc 35: 125–130

    Article  Google Scholar 

  • Rutault K, Alderman C, Chain BM, Katz DR (1999) Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic Biol Med 26: 232–238

    PubMed  Google Scholar 

  • Schallreuter KU, Pittelkow MR (1988) Defective calcium uptake in keratinocyte cell cultures from vitiliginous skin. Arch Dermatol Res 280: 137–139

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Wood JM, Berger J (1991) Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 97: 1081–1085

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Wood JM, Pittelkow MR, Gütlich M, Lemke KR, Rödl W, Swanson NN, Hitzemann K, Ziegler I (1994a) Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science 263: 1444–1446

    PubMed  Google Scholar 

  • Schallreuter KU, Wood JM, Ziegler I, Lemke KR, Pittelkow MR, Lindsey NJ, Gütlich M (1994b) Defective tetrahydrobiopterin and catecholamine biosynthesis in the depigmentation disorder vitiligo. Biochim Biophys Acta 1226: 181–192

    PubMed  Google Scholar 

  • Schallreuter KU, Büttner G, Pittelkow MR, Wood JM, Swanson NN, Körner C (1994c) Cytotoxicity of 6-biopterin to human melanocytes. Biochem Biophys Res Communs 204:43–48

    Google Scholar 

  • Schallreuter KU, Wood JM, Lemke KR, Levenig C (1995a) Treatment of vitiligo with a topical application of pseudocatalase and calcium in combination with short-term UVB exposure: a case study on 33 patients. Dermatol 190: 223–229

    Google Scholar 

  • Schallreuter KU, Lemke KR, Pittelkow MR, Wood JM, Körner C, Malik R (1995b) Catecholamines and keratinocyte differentiation. J Invest Dermatol 104: 953–957

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Wood JM, Pittelkow MR, Büttner G, Swanson NN, Körner C, Ehrke C (1996a) Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch Dermatol Res 288: 14–18

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Pittelkow MR, Swanson NN (1996b) Defective calcium transport in vitiliginous melanocytes. Arch Dermatol Res 288: 11–13

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Blau N (1997) GTP-cyclohydrolase and vitiligo. Lancet 350: 1254

    Article  Google Scholar 

  • Schallreuter KU, Zschiesche M, Moore J, Panske A, Hibberts NA, Herrmann FH, Metelmann HR, Sawatzki J (1998) In vivo evidence for compromised phenylalanine metabolism in vitiligo. Biochem Biophys Res Commun 243: 395–399

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA (1999a) In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Invest Dermatol Symp Proc4: 91–96

    Google Scholar 

  • Schallreuter KU (1999b). Successful treatment of oxidative stress in vitiligo. Skin Pharmacol Appl Skin Physiol 12: 132–138

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Wood JM (1999c) The importance of L-phenylalanine transport and its autocrine turnover to L-tyrosine for melanogenesis in human epidermal melanocytes. Biochem Biophys Res Commun 262: 423–428

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Moore J, Wood JM, Beazley WD, Peters EMJ, Marles LK, Behrens-Williams SC, Dummer R, Blau N, Thöny B (2001) Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: Identification of a general mechanism in regulation of all 6BH4, dependent processes? J Invest Dermatol 116: 167–74

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Tobin DJ, Panske A (2002) Decreased photodamage and low incidence of non-melanoma skin cancer in 136 sun-exposed caucasian patients with vitiligo. Dermatology 204: 194–201

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Behrens-Williams S, Khaliq TP et al. (2003) Increased epidermal functioning wild-type p53 expression in vitiligo. Exp Dermatol 12: 268–277

    Article  PubMed  Google Scholar 

  • Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood JM (2004) Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun 315: 502–508

    Article  PubMed  Google Scholar 

  • Shimizu S, Shiota K, Yamamoto S et al. (2003) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases ntric oxide synthase activity in vascular endothelial cells. Free Radic Biol Med 34: 1343–52

    Article  PubMed  Google Scholar 

  • Song Y, Connor E, Li Y, Zorovich B, Balducci P, Maclaren N (1994) The role of tyrosinase in autoimmune vitiligo. Lancet 344: 1049–1052

    PubMed  Google Scholar 

  • Spritz RA, Gowan K, Bennett DC, Fain PR (2004) Novel vitiligo susceptibility loci on chromosomes 7 (AIS2) and 8 (AIS3), confirmation of SLEV1 on chromosome 17, and their roles in an autoimmune diathesis. Am J Hum Genet 74: 188–91

    Article  PubMed  Google Scholar 

  • Stark JM(1998) Immunological adjuvance of metabolic origin: oxidative stress, postulated impaired function of thiol proteases and immunogenicity. Scand J Immunol 48: 475–479

    Google Scholar 

  • Tobin DJ, Swanson NN, Pittelkow MR, Peters EMJ, Schallreuter KU (2000) Melanocytes are not absent in lesional skin of long duration vitiligo. J Pathol 2000 191: 407–416

    Article  PubMed  Google Scholar 

  • Vile GF (1997) Active oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts. FEBS Lett 412: 70–74

    Article  PubMed  Google Scholar 

  • Westerhof W, Nieuweboer-Krobotova L, Mulder PG, Glazenburg EJ (1999) Left-right comparison study of the combination of fluticasone propionate and UVA vs either fluticasone propionate or UVA alone for the long term treatment of vitiligo. Arch Dermatol 135:1061–6

    Article  PubMed  Google Scholar 

  • Wood JM, Schallreuter KU (1991) Studies on the reactions between human tyrosinase, superoxide anion, hydrogen peroxide and thiols. Biochim Biophys Acta 1074: 378–385

    PubMed  Google Scholar 

  • Wood JM, Jimbow K, Boissy RE, Slominski A, Plonka PM, Slawinski J, Wortsman J, Tosk J (1999) What’s the use of generating melanin? Exp Dermatol 8: 133–164

    Google Scholar 

  • Würfel F, Panske A, Schallreuter KU (2000) Are viral infections a possible cause for the manifestation of vitiligo? J Pigment Cell Res 13: 404

    Google Scholar 

  • Xie Z, Chen D, Jiao D, Bystryn J-C (1999) Vitiligo antibodies are not directed to tyrosinase. Arch Dermatol 135: 417–422

    Article  PubMed  Google Scholar 

  • Yohn JJ, Norris DA, Yrastorza G, Buno IJ, Leff JA, Hake SS, Repine JE (1991) Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes and melanocytes. J Invest Dermatol 97: 405–409

    Article  PubMed  Google Scholar 

  • Yokoyama K, Suzuki H, Yasumoto K, Tomita Y, Shibahara S (1994) Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2. Biochim Biophys Acta 1217: 317–321

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Wien

About this chapter

Cite this chapter

Schallreuter, K.U. (2005). Vitiligo. In: Hertl, M. (eds) Autoimmune Diseases of the Skin. Springer, Vienna. https://doi.org/10.1007/3-211-27377-8_18

Download citation

  • DOI: https://doi.org/10.1007/3-211-27377-8_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-20686-7

  • Online ISBN: 978-3-211-27377-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics