Skip to main content

Development of a Fast Fiber Based UV-Vis Multiwavelength Detector for an Ultracentrifuge

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 131))

Abstract

The advantages of simultaneously detecting multiple wavelengths in ultracentrifugation experiments are obvious, especially for interacting systems. In addition, the detection of the wavelength dependence of turbidity opens up the possibility to obtain independent information on the particle size in addition to the usual sedimentation coefficient distribution for colloidal systems. We therefore made an effort to develop a fast UV/Vis detector, which is able to simultaneously detect the range from 200–800 nm. This is possible by the use of a modern CCD chip based generation of UV-Vis spectrometers, which translates the dispersed white light onto a CCD chip, where each pixel corresponds to a particular wavelength. In addition to the simultaneous detection of a large number of wavelengths in the range 200–800 nm, also with non integer values, these spectrometers are very fast. Current typical spectrum scan times with the necessary scan quality in the ultracentrifuge are in the range of 100 ms but this time can be significantly shortened down to 3 ms for higher light intensities and even down to 10 μs for a new generation of CCD chip based spectrometers.

The introduction of a fiber based UV-Vis optics into a preparative XL-80K ultracentrifuge with the associated hardware developments will be described as a first generation prototype. In this study, we use a wavelength dependent optical lens system instead of the necessary but more complex wavelength independent mirror optical system for a first check on possibilities and limitations of the optical system. First examples for biopolymers and latexes will be presented and compared to those obtained in the commercial XL-A ultracentrifuge. Already the fast detection enables completely new possibilities like the determination of a particle size distribution in a few minutes. Multiwavelength detection at constant position in dependence of time will be demonstrated, which is an important mode for the use of speed profiles for very polydisperse samples. Also, the use of radial multiwavelength scans will be demonstrated producing a three dimensional data space for monitoring the sedimentation via radial scans with multiwavelength detection. However, despite the advantages, the current problems with the detector will also be discussed including the main problem that much intensity is lost in the important UV range as a result of fiber coupling and bending.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Svedberg T, Pedersen KO(1940) The Ultracentrifuge. Clarendon Press, Oxford

    Google Scholar 

  2. Lloyd PH (1974) Optical methods in Ultracentrifugation, Electrophoresis, and Diffusion: with a guide to the interpretation of records. Clarendon Press, Oxford

    Google Scholar 

  3. Schmidt B, Riesner D (1992) A Fluorescence Detection System for the Analytical Ultracentrifuge and its Application to Proteins, Nucleic Acids, Viroids and Viruses. In: Harding SE et al. (ed) Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge, p 176

    Google Scholar 

  4. MacGregor IK, Laue TM (1999) Biophys J 76:357

    Google Scholar 

  5. MacGregor IK, Anderson AL, Laue TM (2004) Biophys Chem 108:165

    Article  CAS  Google Scholar 

  6. Cantow HJ (1964) Makromol Chem 70:130

    Article  CAS  Google Scholar 

  7. Scholtan W, Lange H (1972) Kolloid Z Z Polym 250:782

    Article  CAS  Google Scholar 

  8. Müller HG (1989) Colloid Polym Sci 267:1113

    Article  Google Scholar 

  9. Mächtle W (1992) Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques. In: Harding SE et al. (ed) Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Societyof Chemistry, Cambridge, p 147

    Google Scholar 

  10. Klodwig U, Mächtle W (1989)Colloid Polym Sci 267:1117

    Article  CAS  Google Scholar 

  11. Clewelow AC, Errington N, Rowe AJ (1997) Eur Biophys J 25:311

    Article  Google Scholar 

  12. Holtus G, Borchard W (1989) Colloid and Polymer Science 267:1133

    Article  CAS  Google Scholar 

  13. Cölfen H, Borchard W (1994) Progr Colloid Polym Sci 94:90

    Article  Google Scholar 

  14. Kisters D, Borchard W (1999) Progr Colloid Polym Sci 113:10

    Article  CAS  Google Scholar 

  15. Laue TM (1992) On-Line data aquisition and analysis from the Rayleigh interferometer. In: Harding SE et al. (ed) Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge, p 63

    Google Scholar 

  16. Börger L, Lechner MD, Stadler M (2004) Progr Colloid Polym Sci 127:19

    Google Scholar 

  17. Mächtle W (1999) Progr Colloid Polym Sci 113:1

    Article  Google Scholar 

  18. Flossdorf J, Schillig H, Schindler KP (1978) Makromol Chem 179:1617

    Article  CAS  Google Scholar 

  19. Giebeler R (1992) The Optima XL-A: A New Analytical Ultracentrifuge with a Novel Precision Absorption Optical System. In: Harding SE et al. (ed) Analytical Ultracentrifugation in Biochemistry and Polymer Science. Royal Society of Chemistry, Cambridge, p 16

    Google Scholar 

  20. Flossdorf J (1980) Makromol Chem 181:715

    Article  CAS  Google Scholar 

  21. Cölfen H, Borchard W (1994) Ultrasensitive Schlieren Optical System. In: Bonner RF et al. (ed) Progress in Biomedical Optics, Vol 2136. SPIE Bellingham, Washington, p 307

    Google Scholar 

  22. Schuck P (2000) Biophys J 78:1606

    Article  CAS  Google Scholar 

  23. Stafford WF (1992) Anal Biochem 203:295

    Article  CAS  Google Scholar 

  24. Johnson ML, Correia JJ, Yphantis DA, Halvorson (1981) Biophys J 36:575

    Article  CAS  Google Scholar 

  25. McRorie DK, Voelker PJ (1993) Self-Associating Systems in the Analytical Ultracentrifuge. Beckman Instruments California ( http://www.beckman.com/Literature/BioResearch/362784.pdf )

  26. Demeler B, van Holde KE (2004) Anal Biochem 335:279 and Ultrascan Website: http://www.ultrascan.uthscsa.edu/

    Article  CAS  Google Scholar 

  27. Mächtle W (1991) Progr Colloid Polym Sci 86:111

    Article  Google Scholar 

  28. Voelker P (1995) Progr Colloid Polym Sci 99:162

    Article  CAS  Google Scholar 

  29. Cölfen H, Pauck T, Antonietti M (1997) Progr Colloid Polym Sci 107:136

    Article  Google Scholar 

  30. Schuck P (2003) Anal Biochem 320:104

    Article  CAS  Google Scholar 

  31. Cölfen H, Völkel A (2003) Eur Biophys J 32:432

    Article  CAS  Google Scholar 

  32. Global analysis is also possible with the SEDPHAT software by Peter Schuck. See the following Website for further details: http://www.analyticalultracentrifugation.com/sedphat/sedphat.htm

  33. Vistica J, Dam J, Balbo A, Yikilmaz E, Mariuzza RA, Rouault TA, Schuck P (2004) Anal Biochem 326:234

    Article  CAS  Google Scholar 

  34. Balbo A, Minor KH, Velikovsky CA, Mariuzza RA, Peterson CB, Schuck P (2005) Proc Natl Acad Sci USA 102 1:81

    Article  Google Scholar 

  35. Gledhill RJ (1962) J Phys Chem 66:458

    Article  CAS  Google Scholar 

  36. Bateman JB, Weneck EJ, Eshler DC (1959) J Colloid Sci 14:308

    Article  CAS  Google Scholar 

  37. Heller W, Bhatnagar HL, Nakagaki M (1962) J Chem Phys 36:1163

    Article  CAS  Google Scholar 

  38. Hosono M, Sugii S, Kusudo O, Tsuji W (1973) Bull Inst Chem Res, Kyoto Univ 51:104

    CAS  Google Scholar 

  39. http://www.oceanoptics.com/technical/engineering/USB2000%20OEM%20Data%20Sheet.pdf

  40. http://www.oceanoptics.com/technical/engineering/OEM%20Data%20Sheet%20–%20HR4000.pdf

  41. www.lot-oriel.com/ccd

    Google Scholar 

  42. Cölfen H (1994) Bestimmung thermodynamischer und elastischer Eigenschaften von Gelen mit Hilfe von Sedimentations-gleichgewichten in einer Analytischen Ultrazentrifuge am Beispiel des Systems Gelatine/Wasser. Verlag Köster, Berlin

    Google Scholar 

  43. Visit the following website: http://www.usa.hamamatsu.com/en/products/electron-tube-division/light-sources/xenon-flash-lamps.php

  44. Cölfen H, Borchard W (1994) Anal Biochem 219:321

    Article  Google Scholar 

  45. Laue TM (1981) PhD Dissertation, Univ Of Connecticut, Storrs, CT,USA

    Google Scholar 

  46. Rockholt DL, Royce CR, Richards (1976) Biophys Chem 5:55

    Article  CAS  Google Scholar 

  47. Laue TM, Domanic RA, Yphantis DA (1983) Anal Biochem 131:220

    Article  CAS  Google Scholar 

  48. Yphantis DA, Laue TM, Anderson IA (1983) Anal Biochem 143:95

    Article  Google Scholar 

  49. Mächtle W, Klodwig U (1979) Makromol Chem 180:2507

    Article  Google Scholar 

  50. Mächtle W, Klodwig U (1976) Makromol Chem 177:1607

    Article  Google Scholar 

  51. Sedlack U, Lechner MD (1995) Progr Colloid Polym Sci 99:136

    Article  CAS  Google Scholar 

  52. Ortlepp B, Panke D (1991) Progr Colloid Polym Sci 86:57

    Article  CAS  Google Scholar 

  53. Schindler KP (1980) Avail NTIS. Report (Order No. PB81-167140):157

    Google Scholar 

  54. Flossdorf J, Schillig H, Schindler KP (1980) J Phys E: Scientific Instruments 13:647

    CAS  Google Scholar 

  55. Kuhnert R, Boedel E, Stegemann H, Wastl G (1973) CZ-Chem Tech 2:441

    CAS  Google Scholar 

  56. Müller HG (2004) Progr Colloid Polym Sci 127:9

    Google Scholar 

  57. Stafford WE, Braswell EH (2004) Biophys Chem 108:273

    Article  CAS  Google Scholar 

  58. Müller HG (1989) Colloid Polym Sci 267:1113

    Article  Google Scholar 

  59. Mächtle W (1999) Biophys J 76:1080

    Article  Google Scholar 

  60. Mächtle W (1988) Angew Makromol Chem 162:35

    Article  Google Scholar 

Download references

Acknowledgments

We thank the BASF AG, Ludwigshafen and the Max-Planck-Society for financial support of this work. We also thank Dr. Walter Mächtle, BASF, for useful discussions and Dr. Borries Demeler, UTHCSA, San Antonio for writing a data visualization program to display the multiwavelength data. The mechanical workshop of the BASF is acknowledged for the modification of the XL heatsink and for building the basic detector arm. Andreas Kretzschmar, mechanical workshop MPI-KGF, is acknowledged for multiple modifications of the detector arm. Henryk Pitas, electrical workshop MPI-KGF, is thanked for help with electrical problems. Dr. K. Tauer (MPI-KGF) is acknowledged for the latex samples and Dr. Neil Robinson (UTHCSA) for the cytochrome samples. Finally, we thank Antje Völkel for helpful assistance and Prof. Dr. Dr. h.c. Markus Antonietti for the overall support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Cölfen .

Editor information

Christine Wandrey Helmut Cölfen

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Bhattacharyya, S.K. et al. Development of a Fast Fiber Based UV-Vis Multiwavelength Detector for an Ultracentrifuge. In: Wandrey, C., Cölfen, H. (eds) Analytical Ultracentrifugation VIII. Progress in Colloid and Polymer Science, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_002

Download citation

Publish with us

Policies and ethics