Skip to main content

Emu and Kiwi: The Ear and Hearing in Paleognathous Birds

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 49))

Abstract

Palaeognathae are undoubtedly the most ancestral of all living birds and are central to understanding the early evolution of birds, especially of auditory processing. The large paleognathous birds are characterized by low-frequency vocalizations whereas the smaller paleognathous birds vocalize at higher frequencies with hearing in those that have been tested matched to their vocalizations. Data from the emu suggest that the evolution of avian auditory hair cell types started with the loss of afferent innervation to the short hair cells, followed by a differentiation of the efferent neurons supplying tall and short hair cells. It remains unclear when the full differentiation of the physiological properties of tall and short hair cells occurred. Both paleognathous species whose hearing has been studied show evidence for auditory specializations. In the emu, this specialization corresponds to an overrepresentation of the lower end of their hearing range, as seen in a logarithmic frequency representation on its basilar papilla. In kiwi, the opposite is true, with a specialization at the higher end of their hearing range, supported, for example, by an overrepresentation of hair cells with the same or very similar morphology. The auditory brainstems of emu and kiwi show many features similar to that of the gallinaceous birds, with differences corresponding to the specializations of the peripheral auditory system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Burger, R. M., Cramer, K. S., Pfeiffer, J. D., & Rubel, E. W. (2005). Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. Journal of Comparative Neurology, 481(1), 6–18.

    Article  PubMed  Google Scholar 

  • Carr, C. E., & Boudreau, R. E. (1993). Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: Encoding and measuring interaural time differences. Journal of Comparative Neurology, 334, 337–355.

    Article  CAS  PubMed  Google Scholar 

  • Carr, C. E., Kubke, M. F., Massoglia, D. P., Cheng, S. M., Rigby, L., & Moiseff, A. (1998). Development of temporal coding circuits in the barn owl. In A. R. Palmer, A. Rees, A. Q. Summerfield & R. Meddis (Eds.), Psychophysical and physiological advances in hearing (pp. 344–351). London: Whurr.

    Google Scholar 

  • Chen, L., Salvi, R., & Shero, M. (1994). Cochlear frequency-place map in adult chickens: intracellular biocytin labeling. Hearing Research, 81(1–2), 130–136.

    Article  CAS  PubMed  Google Scholar 

  • Colbourne, R. M., & Kleinpaste, R. (1984). North Island brown kiwi vocalisations and their use in censuring populations. Notornis, 31(3), 191–201.

    Google Scholar 

  • Corfield, J., Gillman, L., & Parsons, S. (2008). Vocalizations of the North Island brown kiwi (Apteryx mantelli). Auk, 125(2), 326–335.

    Article  Google Scholar 

  • Corfield, J. R. (2009). Evolution of the brain and sensory systems of the kiwi. PhD thesis, The University of Auckland, Auckland.

    Google Scholar 

  • Corfield, J. R., Kubke, M. F., Parsons, S., Wild, J. M., & Köppl, C. (2011). Evidence for an auditory fovea in the New Zealand kiwi (Apteryx mantelli). PLoS ONE, 6(8). doi: 10.1371/journal.pone.0023771.

  • Corfield, J. R., Kubke, M. F., Parsons, S., & Koppl, C. (2012). Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization. Journal of the Association for Research in Otolaryngology. doi: 10.1007/s10162-012-0341-4.

    PubMed Central  PubMed  Google Scholar 

  • Cracraft, J. (1973). Continental drift, palaeoclimatology, and the evolution and biogeography of birds. Journal of Zoology, 169, 455–545.

    Article  Google Scholar 

  • Craigie, E. H. (1930). Studies on the brain of the kiwi (Apteryx australis). Journal of Comparative Neurology, 49(2), 223–357.

    Article  Google Scholar 

  • Davies, S. (2002). Ratites and tinamous. New York: Oxford University Press.

    Google Scholar 

  • Davies, S. J. J. F. (2003). Emus. In M. Hutchins (Ed.), Grzimek's animal life encyclopedia. 8 Birds I: Tinamous and ratites to hoatzins (2 ed., pp. 83–87). Farmington Hills, MI: Gale Group.

    Google Scholar 

  • Fettiplace, R., & Hackney, C. M. (2006). The sensory and motor roles of auditory hair cells. Nature Reviews Neuroscience, 7(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, F. P. (1992). Quantitative analysis of the innervation of the chicken basilar papilla. Hearing Research, 61(1–2), 167–178.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, F. P. (1994a). Quantitative TEM analysis of the barn owl basilar papilla. Hearing Research, 73(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, F. P. (1994b). General pattern and morphological specializations of the avian cochlea. Scanning Microscopy, 8(2), 351–364.

    CAS  PubMed  Google Scholar 

  • Fischer, F. P. (1998). Hair cell morphology and innervation in the basilar papilla of the emu (Dromaius novaehollandiae). Hearing Research, 121(1–2), 112–124.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, F. P., Köppl, C., & Manley, G. A. (1988). The basilar papilla of the barn owl Tyto alba: a quantitative morphological SEM analysis. Hearing Research, 34(1), 87–101.

    Article  CAS  PubMed  Google Scholar 

  • Fowler, M. E. (1991). Comparative clinical anatomy of ratites. Journal of Zoo and Wildlife Medicine, 22, 204–227.

    Google Scholar 

  • Fuchs, P., Zidanic, M., Michaels, R., Yuhas, W., & Jiang, G. J. (1998). Ion channels and synaptic function in chick cochlear hair cells. In A. R. Palmer, A. Rees, A. Q. Summerfield, & R. Meddis (Eds.), Psychophysical and psychological advances in hearing (pp. 97–104). London: Whurr.

    Google Scholar 

  • Gleich, O. (1989). Auditory primary afferents in the starling: Correlation of function and morphology. Hearing Research, 37, 255–268.

    Article  CAS  PubMed  Google Scholar 

  • Gleich, O., & Manley, G. A. (2000). The hearing organ of birds and crocodilia. In R. J. Dooling, R. Fay, & A. Popper (Eds.), Comparative hearing: Birds and reptiles. New York: Springer-Verlag.

    Google Scholar 

  • Gleich, O., & Langemann, U. (2011). Auditory capabilities of birds in relation to the structural diversity of the basilar papilla. Hearing Research, 273(1–2), 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Gleich, O., Fischer, F. P., Köppl, C., & Manley, G. A. (2004). Hearing organ evolution and specialization: Archosaurs. In G. A. Manley, A. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 224–255). New York: Springer- Verlag.

    Chapter  Google Scholar 

  • Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, W. A., Han, K. L., Harshman, J., Huddleston, C. J., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., & Yuri, T. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320(5884), 1763–1768.

    Article  CAS  PubMed  Google Scholar 

  • Haddrath, O., & Baker, A. J. (2001). Complete mitochondrial DNA genome sequences of extinct birds: Ratite phylogenetics and the vicariance biogeography hypothesis. Proceedings of the Royal Society of London B: Biological Sciences, 268(1470), 939–945.

    Article  CAS  Google Scholar 

  • Harshman, J., Braun, E. L., Braun, M. J., Huddleston, C. J., Bowie, R. C., Chojnowski, J. L., Hackett, S. J., Han, K. L., Kimball, R. T., Marks, B. D., Miglia, K. J., Moore, W. S., Reddy, S., Sheldon, F. H., Steadman, D. W., Steppan, S. J., Witt, C. C., & Yuri, T. (2008). Phylogenomic evidence for multiple losses of flight in ratite birds. Proceedings of the National Academy of Sciences of the USA, 105(36), 13462–13467.

    Article  CAS  PubMed  Google Scholar 

  • Häusler, U. H., Sullivan, W. E., Soares, D., & Carr, C. E. (1999). A morphological study of the cochlear nuclei of the pigeon (Columba livia). Brain, Behavior and Evolution, 54(5), 290–302.

    Google Scholar 

  • Hyson, R. L. (2005). The analysis of interaural time differences in the chick brain stem. Physiology & Behavior, 86(3), 297–305.

    Google Scholar 

  • Jeffress, L. A. (1948). A place theory of sound localization. Journal of Comparative Physiology and Psychology, 41, 35–39.

    Article  CAS  Google Scholar 

  • Jhaveri, S., & Morest, D. (1982). Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: A Golgi study. Neurosciences, 7(4), 837–853.

    Article  CAS  Google Scholar 

  • Johnston, P. (2011). New morphological evidence supports congruent phylogenies and Gondwana vicariance for palaeognathous birds. Zoological Journal of the Linnean Society, 163(3), 959–982.

    Article  Google Scholar 

  • Jørgensen, J. M., & Christensen, J. T. (1989). The inner ear of the common rhea (Rhea americana L.). Brain, Behavior and Evolution, 34(5), 273–280.

    Google Scholar 

  • Konishi, M. (1970). Comparative neurophysiological studies of hearing and vocalizations in songbirds. Zeitschrift für vergleichende Physiologie, 66(3), 257–272.

    Article  Google Scholar 

  • Köppl, C. (2001a). Efferent axons in the avian auditory nerve. European Journal of Neuroscience, 13(10), 1889–1901.

    Article  PubMed  Google Scholar 

  • Köppl, C. (2001b). Tonotopic projections of the auditory nerve to the cochlear nucleus angularis in the barn owl. Journal of the Association for Research in Otolaryngology, 2(1), 41–53.

    PubMed Central  PubMed  Google Scholar 

  • Köppl, C. (2009). Evolution of sound localisation in land vertebrates. Current Biology, 19(15), 635–639.

    Article  Google Scholar 

  • Köppl, C. (2011a). Birds—same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hearing Research, 273(1–2), 65–71.

    Article  PubMed  Google Scholar 

  • Köppl, C. (2011b). Evolution of the octavolateral efferent system. In D. Ryugo, A. N. Popper, & R. R. Fay (Eds.), Auditory and vestibular efferents (Vol. 38, pp. 217–259). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Köppl, C., & Manley, G. (1997). Frequency representation in the emu basilar papilla. Journal of the Acoustical Society of America, 101(2).

    Google Scholar 

  • Köppl, C., & Carr, C. E. (1997). Low-frequency pathway in the barn owl's auditory brainstem. Journal of Comparative Neurology, 378, 265–282.

    Article  PubMed  Google Scholar 

  • Köppl, C., & Carr, C. E. (2003). Computational diversity in the cochlear nucleus angularis of the barn owl. Journal of Neurophysiology, 89(4), 2313–2329.

    Article  PubMed Central  PubMed  Google Scholar 

  • Köppl, C., Gleich, O., & Manley, G. A. (1993). An auditory fovea in the barn owl cochlea. Journal of Comparative Physiology A, 171, 695–704.

    Article  Google Scholar 

  • Köppl, C., Gleich, O., Schwabedissen, G., Siegl, E., & Manley, G. A. (1998). Fine structure of the basilar papilla of the emu: Implications for the evolution of avian hair-cell types. Hearing Reseach, 126(1–2), 99–112.

    Article  Google Scholar 

  • Köppl, C., Wegscheider, A., Gleich, O., & Manley, G. A. (2000). A quantitative study of cochlear afferent axons in birds. Hearing Research, 139(1–2), 123–143.

    Article  PubMed  Google Scholar 

  • Kuba, H., Yamada, R., Fukui, I., & Ohmori, H. (2005). Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. Journal of Neuroscience, 25(8), 1924–1934.

    Article  CAS  PubMed  Google Scholar 

  • Kubke, M. F., & Carr, C. E. (2000). Development of the auditory brainstem of birds: comparison between barn owls and chickens. Hearing Research, 147(1–2), 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Kubke, M. F., & Carr, C. E. (2006). Morphological variation in the nucleus laminaris of birds. International Journal of Comparative Psychology, 19, 83–97.

    Google Scholar 

  • Leake, P. A. (1977). SEM observations of the cochlear duct in Caiman crocodilus. Scanning Electron Microscopy, 11, 437–444.

    Google Scholar 

  • Lee, K., Feinstein, J., & Cracraft, J. (1997). The phylogeny of ratite birds: Resolving conflicts between molecular and morphological data sets. In D. P. Mindell (Ed.), Avian Molecular Evolution and Systematics (pp. 173–211). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Lippe, W. R. (1991). Reduction and recovery of neuronal size in the cochlear nucleus of the chicken following aminoglycoside intoxication. Hearing Research, 51(2), 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Livezey, B. C., & Zusi, R. L. (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of the Linnean Society, 149(1), 1–95.

    Google Scholar 

  • Mack, A. L., & Jones, J. (2003). Low-frequency vocalizations by cassowaries (Casuarius spp.). The Auk, 120(4), 1062–1068.

    Google Scholar 

  • MacLeod, K. M., Soares, D., & Carr, C. E. (2006). Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). Journal of Comparative Neurology, 495(2), 185–201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Manley, G. A., & Köppl, C. (1998). Phylogenetic development of the cochlea and its innervation. Current Opinion in Neurobiology, 8(4), 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A., Köppl, C., & Yates, G. K. (1997). Activity of primary auditory neurons in the cochlear ganglion of the emu Dromaius novaehollandiae: spontaneous discharge, frequency tuning, and phase locking. Journal of the Acoustical Society of America, 101(3), 1560–1573.

    Article  CAS  PubMed  Google Scholar 

  • Marchant, S., & Higgins, P. J. (1990). Handbook of Australian, New Zealand and Antarctic birds. Melbourne: Oxford University Press.

    Google Scholar 

  • Marin, F., & Puelles, L. (1995). Morphological fate of rhombomeres in quail/chick chimeras: A segmental analysis of hindbrain nuclei. European Journal of Neuroscience, 7(8), 1714–1738.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Dunst, C., Michaels, R. L., & Fuchs, P. A. (1997). Release sites and calcium channels in hair cells of the chick's cochlea. Journal of Neuroscience, 17(23), 9133–9144.

    CAS  PubMed  Google Scholar 

  • Murrow, B. W. (1994). Position-dependent expression of potassium currents by chick cochlear hair cells. Journal of Physiology, 480, 247–259.

    CAS  PubMed  Google Scholar 

  • Olson, S. L. (1985). The fossil record of birds. In D. S. Farner, J. R. King, & K. C. Parkes (Eds.), Avian biology (Vol. 8, pp. 79–238). New York: Academic Press.

    Chapter  Google Scholar 

  • Padian, K., & Chiappe, L. M. (1998). The origin of birds and their flight. Scientific American, 278(2), 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Parks, T. N., & Rubel, E. W. (1975). Organization and development of brain stem auditory nuclei of the chicken: Organization of projections from n. magnocellularis to n. laminaris. Journal of Comparative Neurology, 164(4), 435–448.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, M. J., Gibb, G. C., Crimp, E. A., & Penny, D. (2010). Tinamous and moa flock together: Mitochondrial genome sequence analysis reveals independent losses of flight among ratites. Systematic Biology, 59(1), 90–107.

    Article  PubMed  Google Scholar 

  • Pujol, R., Lenoir, A. l., Ladrrech, S., Trebillac, F., & Rebillard, G. (1992). Correlation between the length of outer hair cells and the frequency coding of the cochlea. In Y. Cazals, L. Demany & K. Horner (Eds.), Auditory physiology and perception (pp. 45–52). Oxford: Pergamon Press.

    Google Scholar 

  • Pycraft, W. P. (1900). On the morphology and phylogeny of the Palaeognathae (Ratitae and Crypturi) and Neognathae (Carinatae). Transactions of the Zoological Society of London, 15, 149–290.

    Article  Google Scholar 

  • Ramón y Cajal, S. (1908). Les ganlions terminaux du nerf acoustique des oiseaux. Trabajos del Instituto Cajal de Investigaciones Biologicas, 6, 195–225.

    Google Scholar 

  • Reid, B., Ordish, R. G., & Harrison, M. (1982). An analysis of the gizzard contents of 50 North Island brown kiwi (Apteryx australis mantelli) and notes on feeding observations. New Zealand Journal of Ecology, 5, 76–85.

    Google Scholar 

  • Sachs, M. B., Young, E. D., & Lewis, R. H. (1974). Discharge patterns of single fibers in the pigeon auditory nerve. Brain Research, 70(3), 431–447.

    Article  CAS  PubMed  Google Scholar 

  • Sibley, C. G., & Ahlquist, J. A. (1990). Phylogeny and classification of birds. New Haven, CT: Yale University Press.

    Google Scholar 

  • Smith, D. J., & Rubel, E. W. (1979). Organization and development of brain stem auditory nuclei of the chicken: Dendritic gradients in nucleus laminaris. Journal of Comparative Neurology, 186(2), 213–239.

    Article  CAS  PubMed  Google Scholar 

  • Smith, Z. D. (1981). Organization and development of brain stem auditory nuclei of the chicken: Dendritic development in N. laminaris. Journal of Comparative Neurology, 203(3), 309–333.

    Article  CAS  PubMed  Google Scholar 

  • Smolders, J. W., Ding-Pfennigdorff, D., & Klinke, R. (1995). A functional map of the pigeon basilar papilla: Correlation of the properties of single auditory nerve fibres and their peripheral origin. Hearing Research, 92(1–2), 151–169.

    Article  CAS  PubMed  Google Scholar 

  • Taborsky, B., & Taborsky, M. (1999). The mating system and stability of pairs in kiwi Apteryx spp. Journal of Avian Biology, 30(2), 143–151.

    Article  Google Scholar 

  • Takasaka, T., & Smith, C. A. (1971). The structure and innervation of the pigeon's basilar papilla. Journal of Ultrastructure Research, 35(1), 20–65.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Christensen-Dalsgaard, J., & Carr, C. E. (2012). Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei. Journal of Comparative Neurology, 520(8), 1784–1799.

    Article  PubMed  Google Scholar 

  • Tilney, M., Tilney, L., & DeRosier, D. (1987). The distribution of hair cell bundle lengths and orientations suggest an unexpected pattern of hair cell stimulation in the chick cochlea. Hearing Research, 25, 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., & Karten, H. J. (2010). Three subdivisions of the auditory midbrain in chicks (Gallus gallus) identified by their afferent and commissural projections. Journal of Comparative Neurology, 518(8), 1199–1219.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy R. Corfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corfield, J.R., Kubke, M.F., Köppl, C. (2013). Emu and Kiwi: The Ear and Hearing in Paleognathous Birds. In: Köppl, C., Manley, G., Popper, A., Fay, R. (eds) Insights from Comparative Hearing Research. Springer Handbook of Auditory Research, vol 49. Springer, New York, NY. https://doi.org/10.1007/2506_2013_25

Download citation

Publish with us

Policies and ethics