Skip to main content

MR Imaging and MR Spectroscopy in Prostate Cancer

  • Chapter
  • First Online:
Book cover Radiotherapy in Prostate Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1942 Accesses

Abstract

Multiparametric MR Imaging with high resolution T2-weighted imaging (HR-T2WI), diffusion weighted imaging (DWI), dynamic contrast enhanced MRI (DCE-MRI), and MR spectroscopy (MRS) plays a crucial role in the assessment, localization, staging, biopsy planning, and therapy monitoring of prostate cancer (PCa) through delivering unmatched soft tissue contrast as well as functional information especially regarding cell density, vascularization, and metabolism. It also helps identifying tumors missed on PSA testing, DRE, and TRUS-guided biopsy. HR-T2WI provides a clear depiction of the prostate zonal anatomy and is indispensable for PCa detection, localization, and accurate tumor staging. DWI adds information about cellular density by quantifying Brownian motion of interstitial water molecules and thereby enabling the differentiation of benign from malignant tissue. DCE-MRI is another functional imaging technique which allows for characterizing pharmacokinetic features reflecting the prostatic vascularization through a series of high temporal resolution T1-weighted images following the administration of contrast medium. In-vivo proton MRS investigates the biochemical constituents of prostate tissue noninvasively. Metabolic alterations caused by cancerous infiltration can be identified as well as metabolic response in the course of radiotherapy. While in the healthy gland citrate provides the predominant signal in MR spectra, strong accumulation of choline compounds indicates PCa, and the choline/citrate ratio may serve as suitable biomarker for malignancy. MRS allows simultaneous acquisition of spatially localized spectra from a multitude of tissue volumes as small as 1 cm3 or below, with complete prostate coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63:335–350. doi:10.1016/j.ejrad.2007.06.028

    Article  PubMed  Google Scholar 

  • Arumainayagam N, Ahmed HU, Moore CM et al (2013) Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard. Radiology 268:761–769. doi:10.1148/radiol.13120641

    Article  PubMed  Google Scholar 

  • Bains LJ, Studer UE, Froehlich JM et al (2014) Diffusion-weighted magnetic resonance imaging detects significant prostate cancer with a high probability: results of a prospective study with final pathology of prostates with and without cancer as the reference standard. J Urol. doi:10.1016/j.juro.2014.03.039

    PubMed  Google Scholar 

  • Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757. doi:10.1007/s00330-011-2377-y

    Article  PubMed Central  PubMed  Google Scholar 

  • Beyersdorff D, Darsow U, Stephan C et al (2003) MRI of prostate cancer using three different coil systems: image quality, tumor detection, and staging. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 175:799–805. doi:10.1055/s-2003-39929

    Article  CAS  Google Scholar 

  • Bezzi M, Kressel HY, Allen KS et al (1988) Prostatic carcinoma: staging with MR imaging at 1.5 T. Radiology 169:339–346. doi:10.1148/radiology.169.2.3174982

    Article  CAS  PubMed  Google Scholar 

  • Bonekamp D, Macura KJ (2008) Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate. Top Magn Reson Imaging TMRI 19:273–284. doi:10.1097/RMR.0b013e3181aacdc2

    Article  Google Scholar 

  • Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348

    Article  CAS  PubMed  Google Scholar 

  • Chang JH, Lim Joon D, Nguyen BT et al (2014) MRI scans significantly change target coverage decisions in radical radiotherapy for prostate cancer. J Med Imaging Radiat Oncol 58:237–243. doi:10.1111/1754-9485.12107

    Article  PubMed  Google Scholar 

  • Chenevert TL, Meyer CR, Moffat BA et al (2002) Diffusion MRI: a new strategy for assessment of cancer therapeutic efficacy. Mol Imaging 1:336–343

    Article  PubMed  Google Scholar 

  • Cornel EB, Smits GA, Oosterhof GO et al (1993) Characterization of human prostate cancer, benign prostatic hyperplasia and normal prostate by in vitro 1H and 31P magnetic resonance spectroscopy. J Urol 150:2019–2024

    CAS  PubMed  Google Scholar 

  • Costello LC, Franklin RB (1997) Citrate metabolism of normal and malignant prostate epithelial cells. Urology 50:3–12. doi:10.1016/S0090-4295(97)00124-6

    Article  CAS  PubMed  Google Scholar 

  • Costello LC, Franklin RB, Feng P (2005) Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5:143–153. doi:10.1016/j.mito.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  • Crehange G, Maingon P, Gauthier M et al (2011) Early choline levels from 3-tesla MR spectroscopy after exclusive radiation therapy in patients with clinically localized prostate cancer are predictive of plasmatic levels of PSA at 1 year. Int J Radiat Oncol Biol Phys 81:e407–413. doi:10.1016/j.ijrobp.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  • Delongchamps NB, Rouanne M, Flam T et al (2011) Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int 107:1411–1418. doi:10.1111/j.1464-410X.2010.09808.x

    Article  PubMed  Google Scholar 

  • Djavan B, Ravery V, Zlotta A et al (2001) Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol 166:1679–1683

    Article  CAS  PubMed  Google Scholar 

  • Dotan ZA (2008) Bone imaging in prostate cancer. Nat Clin Pract Urol 5:434–444. doi:10.1038/ncpuro1190

    Article  PubMed  Google Scholar 

  • Engelbrecht MR, Huisman HJ, Laheij RJF et al (2003) Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 229:248–254. doi:10.1148/radiol.2291020200

    Article  PubMed  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML et al (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 9:79–93

    Article  CAS  Google Scholar 

  • Hosseinzadeh K, Schwarz SD (2004) Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging JMRI 20:654–661. doi:10.1002/jmri.20159

    Article  Google Scholar 

  • Jeong IG, Lim JH, You D et al (2013) Incremental value of magnetic resonance imaging for clinically high risk prostate cancer in 922 radical prostatectomies. J Urol 190:2054–2060. doi:10.1016/j.juro.2013.06.035

    Article  PubMed  Google Scholar 

  • Kim CK, Park BK, Lee HM (2009) Prediction of locally recurrent prostate cancer after radiation therapy: Incremental value of 3T diffusion-weighted MRI. J Magn Reson Imaging 29:391–397. doi:10.1002/jmri.21645

    Article  PubMed  Google Scholar 

  • Kim JY, Kim SH, Kim YH et al (2014) Low-risk prostate cancer: the accuracy of multiparametric mr imaging for detection. Radiology 130801. doi: 10.1148/radiol.13130801

    Google Scholar 

  • Kirkham APS, Emberton M, Allen C (2006) How good is MRI at detecting and characterising cancer within the prostate? Eur Urol 50:1163–1174; discussion 1175. doi: 10.1016/j.eururo.2006.06.025

    Google Scholar 

  • Kobus T, Hambrock T, Hulsbergen-van de Kaa CA et al (2011) In vivo assessment of prostate cancer aggressiveness using magnetic resonance spectroscopic imaging at 3 T with an Endorectal coil. Eur Urol 60:1074–1080. doi:10.1016/j.eururo.2011.03.002

    Article  PubMed  Google Scholar 

  • Lagemaat MW, Scheenen TWJ (2014) Role of high-field MR in studies of localized prostate cancer. NMR Biomed 27:67–79. doi:10.1002/nbm.2967

    Article  PubMed  Google Scholar 

  • Manenti G, Squillaci E, Carlani M et al (2006) Magnetic resonance imaging of the prostate with spectroscopic imaging using a surface coil initial clinical experience. Radiol Med (Torino) 111:22–32

    Article  CAS  Google Scholar 

  • Mueller-Lisse UG, Swanson MG, Vigneron DB, Kurhanewicz J (2007) Magnetic resonance spectroscopy in patients with locally confined prostate cancer: association of prostatic citrate and metabolic atrophy with time on hormone deprivation therapy, PSA level, and biopsy Gleason score. Eur Radiol 17:371–378. doi:10.1007/s00330-006-0321-3

    Article  PubMed  Google Scholar 

  • Noguchi M, Stamey TA, McNeal JE, Yemoto CM (2001) Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol 166:104–109; discussion 109–110

    Google Scholar 

  • Pickett B, Ten Haken RK, Kurhanewicz J et al (2004) Time to metabolic atrophy after permanent prostate seed implantation based on magnetic resonance spectroscopic imaging. Int J Radiat Oncol Biol Phys 59:665–673. doi:10.1016/j.ijrobp.2003.11.024

    Article  PubMed  Google Scholar 

  • Roach M 3rd, Hanks G, Thames H Jr et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO phoenix consensus conference. Int J Radiat Oncol Biol Phys 65:965–974. doi:10.1016/j.ijrobp.2006.04.029

    Article  PubMed  Google Scholar 

  • Romero Otero J, Garcia Gomez B, Campos Juanatey F, Touijer KA (2014) Prostate cancer biomarkers: an update. Urol Oncol. doi:10.1016/j.urolonc.2013.09.017

    PubMed  Google Scholar 

  • Scheenen TWJ, Heijmink SWTPJ, Roell SA et al (2007) Three-dimensional proton MR spectroscopy of human prostate at 3 T without Endorectal coil: feasibility. Radiology 245:507–516. doi:10.1148/radiol.2451061444

    Article  PubMed  Google Scholar 

  • Song I, Kim CK, Park BK, Park W (2010) Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. Am J Roentgenol 194:W477–W482. doi:10.2214/AJR.09.3557

    Article  Google Scholar 

  • Steyn JH, Smith FW (1984) Nuclear magnetic resonance (NMR) imaging of the prostate. Br J Urol 56:679–681

    Article  CAS  PubMed  Google Scholar 

  • Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging JMRI 9:53–60

    Article  CAS  Google Scholar 

  • Thompson IM, Pauler DK, Goodman PJ et al (2004) Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med 350:2239–2246. doi:10.1056/NEJMoa031918

    Article  CAS  PubMed  Google Scholar 

  • Turkbey B, Pinto PA, Mani H et al (2010) Prostate cancer: value of multiparametric MR imaging at 3 T for detection-histopathologic correlation. Radiology 255:89–99. doi:10.1148/radiol.09090475

    Article  PubMed Central  PubMed  Google Scholar 

  • Turkbey B, Shah VP, Pang Y et al (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258:488–495

    Article  PubMed Central  PubMed  Google Scholar 

  • Vicini FA, Vargas C, Abner A et al (2005) Limitations in the use of serum prostate specific antigen levels to monitor patients after treatment for prostate cancer. J Urol 173:1456–1462. doi:10.1097/01.ju.0000157323.55611.23

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Mazaheri Y, Zhang J et al (2008) Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology 246:168–176. doi:10.1148/radiol.2461070057

    Article  PubMed  Google Scholar 

  • Westphalen AC, Coakley FV, Roach M 3rd et al (2010) Locally recurrent prostate cancer after external beam radiation therapy: diagnostic performance of 1.5-T Endorectal MR imaging and MR spectroscopic imaging for detection. Radiology 256:485–492. doi:10.1148/radiol.10092314

    Article  PubMed Central  PubMed  Google Scholar 

  • Zakian KL, Sircar K, Hricak H et al (2005) Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234:804–814. doi:10.1148/radiol.2343040363

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried A. Willinek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willinek, W.A., Decker, G., Träber, F. (2014). MR Imaging and MR Spectroscopy in Prostate Cancer. In: Geinitz, H., Roach III, M., van As, N. (eds) Radiotherapy in Prostate Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2014_1034

Download citation

  • DOI: https://doi.org/10.1007/174_2014_1034

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37098-4

  • Online ISBN: 978-3-642-37099-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics