Skip to main content

Advances in Chest Radiography Techniques: CR, DR, Tomosynthesis, and Radiation Dose Optimization

  • Chapter
  • First Online:
Pediatric Chest Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2600 Accesses

Abstract

A revolution in radiography has occurred in the last three decades; digital radiography has replaced screen-film radiography. To understand digital radiography, one must begin with the fundamental principles, which have not changed since Roentgen’s time. The conversion of X-rays into a visible image, however, has changed from screen-film to digital radiography. A discussion on the characteristics of digital radiography and its most common forms, computed radiography (CR) and digital flat-panel radiography follows. The fundamentals of digital image processing are discussed, including preprocessing, latitude reduction, and contrast modification. Advanced technologies are also described, including structured phosphors, slot scanners, dual-sided CR, irradiation side sampling flat panels, and gaseous avalanche detectors. The potential application of dual energy subtraction radiography and tomosynthesis to pediatric thoracic radiography is also considered. The chapter concludes with a discussion on radiation dose optimization in pediatric chest radiography including the newest standards for exposure indicators, dose area product, dose reporting, and informatics initiatives to support dose reporting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some older systems report “EAP”, or “Exposure Area Product” in traditional units of Roentgen times distance squared.

References

  • AAPM position statement on radiation risks from medical imaging. PP-25. 12/13/2011 http://www.aapm.org/org/policies/details.asp?id=318&type=PP&current=true Accessed 29 April 2013

  • Cohen MD, Long B, Cory DA, Broderick NJ, Smith JA (1989) Digital imaging of the newborn chest. Clin Radiol 40:365–368

    Article  CAS  PubMed  Google Scholar 

  • Cohen MD, Katz BP, Kalasinski LA, White SJ, Smith JA, Long B (1991) Digital imaging with a photostimulable phosphor in the chest of newborns. Radiology 181(3):829–832

    Article  CAS  PubMed  Google Scholar 

  • DeschĂŞnes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, Parent S (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine 35:989–994

    Article  PubMed  Google Scholar 

  • DesprĂ©s P, Beaudoin G, Gravel P, de Guise JA (2005) Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging. Med Phys 32(4):1193–1204

    Article  PubMed  Google Scholar 

  • Don S, Whiting BR, Rutz LJ, Apgar BK (2012) New exposure indicators for digital radiography simplified for radiologists and technologists. Am J Roentgenol 199(6):1337–1341. doi:10.2214/AJR.12.8678

    Article  Google Scholar 

  • Don S, Macdougall R, Strauss K, Moore QT, Goske MJ, Cohen M, Herrmann T, John SD, Noble L, Morrison G, Lehman L, Whiting BR (2013) Image gently campaign back to basics initiative: ten steps to help manage radiation dose in pediatric digital radiography. Am J Roentgenol 200(5):W431–W436. doi:10.2214/AJR.12.9895

    Article  Google Scholar 

  • Heller RM, Erickson JJ, Price RR (1982) Pediatric non-angiographic applications of digital radiography. In: Price RR, Rollo FD, Mo-nahan WG, James AE Jr (eds) Digital radiography: a focus on clinical utility. Grune & Stratton, New York, pp 267–277

    Google Scholar 

  • Kogutt MS, Jones JP, Perkins DD (1988) Low-dose digital computed radiography in pediatric chest imaging. Am J Roentgenol 151:775–779

    Article  CAS  Google Scholar 

  • Kroft LJM, Geleijns J, Mertens BJA, Veldkamp WJH, Zonderland HM (2004) Digital slot-scan charge-coupled device radiography versus AMBER and bucky screen-film radiography for detection of simulated nodules and interstitial disease in a chest phantom. Radiol 231(1):156–163

    Article  Google Scholar 

  • Kroft LJM, Veldkamp WJH, Mertens BJA, Boot MV, Geleijns J (2005) Comparison of eight different digital chest radiography systems: variation in detection of simulated chest disease. Am J Roentgenol 185:339–346

    Article  Google Scholar 

  • Kushner DC (1983) Scanning beam low dose digital radiography: initial clinical trials relevant to pediatric radiology [abstr]. Am J Roentgenol 141:847

    Google Scholar 

  • Leblans P, Struye L, Willems P (2000) A new needle-crystalline computed radiography detector. J Digit Imaging 13(2)Suppl 0031:117–120

    Google Scholar 

  • Liu X, Shaw CC, Lai CJ, Altunbasa MC, Chen L, Han T, Wang T (2008) Scatter rejection and low-contrast performance of a slot-scan digital chest radiography system with electronic aft-collimation: a chest phantom study. Med Phys 35(6):2391–2402

    Article  PubMed Central  PubMed  Google Scholar 

  • Luckey GW (1975) Apparatus and method for producing images corresponding to patterns of high-energy radiation. US Patent 3,859,527, 01 Jan 1975

    Google Scholar 

  • Medical electrical equipment—Exposure index of digital X-ray imaging systems—Part 1: Definitions and requirements for general radiography, International Electrotechnical Commission (IEC), international standard 62494-1-08 Geneva, Switzerland, 2008

    Google Scholar 

  • Merlo L, Bighi S, Cervi PM, Lupi L (1991) Computed radiography in neonatal intensive care. Pediatr Radiol 21:94–96

    Article  CAS  PubMed  Google Scholar 

  • Rowlands JA (2002) The physics of computed radiography. Phys Med Biol 47:R123–R166

    Article  CAS  PubMed  Google Scholar 

  • Romlein J (2007) CR versus DR? Blurred lines of distinction. Applied Radiol December Suppl:8–10

    Google Scholar 

  • Samei E, Saunders RS, Lo JY, Dobbins JT III, Jesneck JL, Floyd CE, Ravin CE (2004) Fundamental imaging characteristics of a slot-scan digital chest radiographic system. Med Phys 31(9):2687–2698

    Article  PubMed  Google Scholar 

  • Schaefer-Prokop C, Neitzel U, Venema HW, Uffmann M, Prokop M (2008) Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 18:1818–1830

    Article  PubMed Central  PubMed  Google Scholar 

  • Seibert JA (2007) Digital radiography: CR versus DR? Time to reconsider the options, the definitions, and the current capabilities. Applied Radiol December Suppl:4–7

    Google Scholar 

  • Seibert JA, Morin RL (2011) The standardized exposure index for digital radiography: an opportunity for optimization of radiation dose to the pediatric population. Pediatr Radiol 41:573–581

    Article  PubMed Central  PubMed  Google Scholar 

  • Shepard SJ, Wang J, Flynn M, Gingold E, Goldman L, Krugh K, Leong DL, Mah E, Ogden K, Peck D, Samei E, Wang J, Willis CE (2009) An exposure indicator for digital radiography: AAPM Task Group 116 (Executive Summary). Med Phys 36(7):2898–2914

    Article  PubMed Central  PubMed  Google Scholar 

  • Tarver RD, Cohen M, Broderick NJ, Conces DJ Jr (1990) Pediatric digital chest imaging. J Thorac Imaging 5(1):31–35

    Article  CAS  PubMed  Google Scholar 

  • Uffmann M, Prokop M, Eisenhuber E, Fuchsjager M, Weber M, Schaefer-Prokop C (2005) Computed radiography and direct radiography: influence of acquisition dose on the detection of simulated lesions. Invest Radiol 40(5):249–256

    Article  PubMed  Google Scholar 

  • Uffmann M, Schaefer-Prokop C (2009) Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol 72(2):202–208

    Article  PubMed  Google Scholar 

  • Vastagh S (2011) Statement by MITA on behalf of the MITA CR-DR group of the X-ray section. Pediatr Radiol 41:566. doi:10.1007/s00247-010-1961-7

    Article  PubMed  Google Scholar 

  • Vult von Steyern K, Björkman-Burtscher IM, Bozovic G, Wiklund M, Geijer M (2012) Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis. Eur Radiol 22:2718–2728

    Article  PubMed  Google Scholar 

  • Willis CE (2002) Computed radiography: a higher dose? Pediatr Radiol 32:745–750

    Article  PubMed  Google Scholar 

  • Willis CE (2008) Digital radiography: CR versus DR? Sometimes recognizing the distinction in technologies makes a difference. Applied Radiol January:25–28

    Google Scholar 

  • Willis CE (2009) Optimizing digital radiography of children. Eur J Radiol 72(2):266–273

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Willis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willis, C.E., Don, S. (2013). Advances in Chest Radiography Techniques: CR, DR, Tomosynthesis, and Radiation Dose Optimization. In: Garcia-Peña, P., Guillerman, R. (eds) Pediatric Chest Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2013_938

Download citation

  • DOI: https://doi.org/10.1007/174_2013_938

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37336-7

  • Online ISBN: 978-3-642-37337-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics