Skip to main content

CT Evaluation of the Myocardial Blood Supply: Dual-Source Dual-Energy CT

  • Chapter
  • First Online:
Book cover CT Imaging of Myocardial Perfusion and Viability

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1329 Accesses

Abstract

With dual-source CT in dual-energy mode, two X-ray tubes are operated independently at different voltages, acquiring two data sets showing different attenuation levels. An “iodine distribution map” is used for the assessment of myocardial blood pool status by analyzing iodine distribution within the myocardium based on the specific absorption characteristics of iodine for high and low X-ray energy spectra. Contrast-enhanced dual-energy computed tomography (DECT) perfusion with the patient at rest enables the evaluation of changes in the status of the myocardial blood supply. Rest DECT iodine distribution maps make hypoperfused myocardium more conspicuous and assist in the identification of areas exhibiting reversible myocardial ischemia. Rest DECT has thus expanded the clinical application of multidetector CT, as a “one stop shop” imaging modality to identify both coronary artery disease and myocardial blood pool deficits in a single examination. Stress DECT perfusion has the potential to become a robust clinical tool for the detection of myocardial ischemia. The combined approach of coronary CT angiography and stress DECT perfusion allows identification of hemodynamically significant coronary lesions in high-risk patients with a large calcified plaque burden or stents. This chapter provides a protocol setup and the characteristic features of dual-source DECT, and derives its benefits and limitations for DECT myocardial perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnoldi E, Lee YS, Ruzsics B et al (2011) CT detection of myocardial blood volume deficits: dual-energy CT compared with single-energy CT spectra. J Cardiovasc Comput Tomogr 5:421–429

    Article  PubMed  Google Scholar 

  • Bamberg F, Becker A, Schwarz F et al (2011) Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 260:689–698

    Article  PubMed  Google Scholar 

  • Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54:1072–1084

    Article  PubMed  Google Scholar 

  • Chandrasekar B, Doucet S, Bilodeau L et al (2001) Complications of cardiac catheterization in the current era: a single-center experience. Catheter Cardiovasc Interv 52:289–295

    Article  PubMed  CAS  Google Scholar 

  • Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523

    PubMed  CAS  Google Scholar 

  • Crossett MP, Schneider-Kolsky M, Troupis J (2011) Normal perfusion of the left ventricular myocardium using 320 MDCT. J Cardiovasc Comput Tomogr 5:406–411

    Article  PubMed  Google Scholar 

  • Flohr TG, McCollough C, Bruder H et al (2006) First performance evaluation of a dual source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  • Gaemperli O, Schepis T, Valenta I et al (2007) Cardiac image fusion from stand-alone SPECT and CT: clinical experience. J Nucl Med 48:696–703

    Article  PubMed  Google Scholar 

  • Gaemperli O, Schepis T, Valenta I et al (2008) Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology 248:414–423

    Article  PubMed  Google Scholar 

  • George RT, Silva C, Cordeiro MA et al (2006) Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 48:153–160

    Article  PubMed  Google Scholar 

  • George RT, Jerosch-Herold M, Silva C et al (2007) Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 42:815–822

    Article  PubMed  Google Scholar 

  • Hachamovitch R, Berman DS, Kiat H et al (1996) Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 93:905–914

    Article  PubMed  CAS  Google Scholar 

  • Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507

    Article  PubMed  CAS  Google Scholar 

  • Heller GV, Calnon D, Dorbala S (2009) Recent advances in cardiac PET and PET/CT myocardial perfusion imaging. J Nucl Cardiol 16:962–969

    Article  PubMed  Google Scholar 

  • Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  • Kang DK, Schoepf UJ, Bastarrika G, Nance JW, Abro JA, Ruzsics B (2010) Dual-energy computed tomography for integrative imaging of coronary artery disease: principles and clinical applications. Semin Ultrasound CT MRI 31:276–291

    Article  Google Scholar 

  • Ko SM, Choi JW, Song MG et al (2011) Myocardial perfusion imaging using adenosine-induced stress dual-energy computed tomography of the heart: comparison with cardiac magnetic resonance imaging and conventional coronary angiography. Eur Radiol 21:26–35

    Article  PubMed  Google Scholar 

  • Ko SM, Choi JW, Hwang HK et al (2012a) Diagnostic performance of combined noninvasive anatomic and functional assessment with dual-source CT and adenosine-induced stress dual-energy CT for detection of significant coronary stenosis. Am J Roentgenol 98:512–520

    Article  Google Scholar 

  • Ko BS, Cameron JD, Meredith IT et al (2012b) Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J 33:67–77

    Article  PubMed  Google Scholar 

  • Mehra V, Valdiviezo C, Arbab-zadeh A et al (2011) A stepwise approach to the visual interpretation of CT-based myocardial perfusion. J Cardiovasc Comput Tomogr 5:357–369

    Article  PubMed  Google Scholar 

  • Meijboom WB, van Mieghem CA, van Pelt N et al (2008) Comprehensive assessment of coronary artery stenoses. Computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643

    Article  PubMed  Google Scholar 

  • Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71

    Article  PubMed  CAS  Google Scholar 

  • Mühlenbruch G, Seyfarth T, Soo CS, Pregalathan N, Mahnken AH (2007) Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. Eur Radiol 17:603–609

    Article  PubMed  Google Scholar 

  • Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC (2007) Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 50:1343–1353

    Article  PubMed  Google Scholar 

  • Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  • Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254:410–419

    Article  PubMed  Google Scholar 

  • Rodriguez-Granillo GA, Rosales MA, Degrossi E, Rodriguez AE (2010) Signal density of left ventricular myocardial segments and impact of beam hardening artifact: implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging 26:345–354

    Article  PubMed  Google Scholar 

  • Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 18:2414–2424

    Article  PubMed  Google Scholar 

  • Ruzsics B, Schwarz F, Schoepf UJ et al (2009) Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 104:318–326

    Article  PubMed  Google Scholar 

  • Santana CA, Garcia EV, Faber TL et al (2009) Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J Nucl Cardiol 16:201–211

    Article  PubMed  Google Scholar 

  • Schwarz F, Ruzsics B, Schoepf UJ et al (2008) Dual-energy CT of the heart-principles and protocols. Eur J Radiol 68:423–433

    Article  PubMed  Google Scholar 

  • Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R et al (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244:419–428

    Article  PubMed  Google Scholar 

  • Vlahos I, Godoy MC, Naidich DP (2010) Dual-energy computed tomography imaging of the aorta. J Thorac Imaging 25:289–300

    Article  PubMed  Google Scholar 

  • Wang R, Yu W, Wang Y et al (2011) Incremental value of dual-energy CT to coronary CT angiography for the detection of significant coronary stenosis: comparison with quantitative coronary angiography and single photon emission computed tomography. Int J Cardiovasc Imaging 27:647–656

    Article  PubMed  CAS  Google Scholar 

  • Watkins S, McGeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120:2207–2213

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author sincerely thanks Dr. Meong Gun Song, Department of Thoracic Surgery at Konkuk University Medical Center, Dr. Tae-Hwan Lim, Department of Radiology at Asan Medical Center, Dr. Bernhard Krauss, Jungmin Hwang, and the CT technologists and the Radiology Department nursing staff at Konkuk University Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Min Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ko, S.M. (2012). CT Evaluation of the Myocardial Blood Supply: Dual-Source Dual-Energy CT. In: Schoepf, U., Bamberg, F., Ruzsics, B., Vliegenthart, R., Bastarrika, G. (eds) CT Imaging of Myocardial Perfusion and Viability. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_766

Download citation

  • DOI: https://doi.org/10.1007/174_2012_766

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33878-6

  • Online ISBN: 978-3-642-33879-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics