Skip to main content

Clinical Applications of High-Energy Electrons

  • Chapter
  • First Online:
Technical Basis of Radiation Therapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 4292 Accesses

Abstract

High-energy electron beams have been used successfully in radiation therapy for several decades. Their primary application has been in the treatment of skin and superficial lesions and also play an important role in the treatment of head and neck and breast disease. Many applications where electrons have been used historically have been replaced by the modem techniques of intensity modulated radiation therapy (IMRT) or TomoTherapy but there is still a distinct role for electrons in the treatment of the total skin, other superficial regions, or as a unique boost modality to treat the skin surface while protecting sensitive underlying normal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able CM, Mills MD, McNeese MD, Hogstrom KR (1991) Evaluation of a total scalp electron irradiation technique. Int J Radiat Oncol Biol Phys 21:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Akazawa C (1989) Treatment of the scalp using photon and electron beams. Med Dosim 14(2):129–131

    PubMed  CAS  Google Scholar 

  • Al Uwini S, Antonini N, Poortmans PM (2009) The influence of the use of CT-planning on the irradiated boost volume in breast conserving treatment. Radiother Oncol 93:87

    Article  PubMed  Google Scholar 

  • Almond PR (1976) Radiation physics of electron beams. In: Tapley N (ed) Clinical application of the electron beam. John Wiley, New York

    Google Scholar 

  • Almond PR, Biggs PJ, Coursey BM (1999) AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870

    Article  PubMed  CAS  Google Scholar 

  • American Association of Physicists in Medicine (1987) American association of physicists in Medicine: report 23. Total skin electron therapy: technique and dosimetry. American Institute of Physics, New York

    Google Scholar 

  • American Association of Physicists in Medicine (1991) American association of physicists in Medicine: task group 25 report. Clinical electron beam dosimetry. Med Phys 18:73–109

    Article  Google Scholar 

  • Antolak JA, Scrimger JW, Mah E (1992) Optimization of a cord shielding technique for electrons. Australas Phys Eng Sci Med 15:91–94

    PubMed  CAS  Google Scholar 

  • Antolak JA, Cundiff JH, Ha CS (1998) Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides. Int J Radiat Oncol Biol Phys 40:101–108

    Article  PubMed  CAS  Google Scholar 

  • Archambeau JO, Forell B, Doria R et al (1981) Use of variable thickness bolus to control electron beam penetration in chest wall irradiation. Int J Radiat Oncol Biol Phys 7:835–842

    Article  PubMed  CAS  Google Scholar 

  • Bartelink H, Horiot JC, Poortmans PM et al (2007) Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-years results of the randomized boost vs no boost EORTC 22881–10882 trial. J Clin Oncol 25:3259–3265

    Article  PubMed  Google Scholar 

  • Beddar AS, Biggs PJ, Chang S et al (2006) Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM radiation therapy committee task group no. 72. Med Phys 33:1476–1489

    Article  PubMed  Google Scholar 

  • Benda RK, Yasuda G, Sethi A et al (2003) Breast boost: Are we missing the target? Cancer 97:905–909

    Article  PubMed  Google Scholar 

  • Boone ML, Jardine JH, Wright AE, Tapley ND (1967) High-energy electron dose perturbations in regions of tissue heterogeneity. I. In vivo dosimetry. Radiology 88:1136–1145

    PubMed  CAS  Google Scholar 

  • Boone ML, Almond PR, Wright AE (1969) High-energy electron dose perturbations in regions of tissue heterogeneity. Ann N Y Acad Sci 161:214–232

    Article  PubMed  CAS  Google Scholar 

  • Brahme A, Svensson H (1976) Specification of electron beam quality from the central-axis depth absorbed-dose distribution. Med Phys 3:95–102

    Article  PubMed  CAS  Google Scholar 

  • Chobe R, McNeese M, Weber R, Fletcher GH (1988) Radiation therapy for carcinoma of the nasal vestibule. Otolaryngol Head Neck Surg 98:67–71

    PubMed  CAS  Google Scholar 

  • Ciocca M, Piazzi V, Lazzari R et al (2006) Real-time in vivo dosimetry using micro-MOSFET detectors during intraoperative electron beam radiation therapy in early-stage breast cancer. Radiother Oncol 78:213–216

    Article  PubMed  CAS  Google Scholar 

  • Coles C, Wilson CB, Cumming J et al. Titanium clip placement to allow accurate tumor bed localization following breast conserving surgery: audit on behalf of the IMPORT trial management group. Eur J Surg Oncol 1).1016/j.ejso.2008.1009.1005

    Google Scholar 

  • Cuzick J, Stewart H, Rutqvist L et al (1994) Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 12:447–453

    PubMed  CAS  Google Scholar 

  • Donaldson SS, Findley DO (1991) Treatment of orbital lymphoid tumors with electron beams. In: Vaeth JM, Meyer JL (eds) Frontiers of Radiation Therapy and Oncology Vol 25: The Role of High Energy Electrons in the Treatment of Cancer. Basel: S. Karger AG pp 187–200

    Google Scholar 

  • Dutreix J (1970) Dosimetry. In: Gil G, Gayarre G (eds) Symposium on high-energy electrons. General Directorate of Health, Madrid

    Google Scholar 

  • Duvic M, Apisarnthanarax N, Cohen DS, Smith TL, Ha CS, Kurzrock R (2003) Analysis of long-term outcomes of combined modality therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol 49:35–49

    Article  PubMed  Google Scholar 

  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2000) Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomized trials. Lancet 355:1757–1770

    Article  Google Scholar 

  • Early Breast Cancer Trialists Collaborative Group (EBCTCG) (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet 366:2087–2106

    Google Scholar 

  • Ekstrand KE, Dixon RL (1982) The problem of obliquely incident beams in electron-beam treatment planning. Med Phys 9:276–278

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Nag S, Kinsella TJ (2000) Alternative techniques of intraoperative radiotherapy. Eur J Surg Oncol Nov; 26(Suppl A):S25–S27

    PubMed  Google Scholar 

  • Feigenberg SJ, Mendenhall NP, Benda RK et al (2003) Postmastectomy radiotherapy: patterns of recurrence and long-term disease control using electrons. Int J Radiat Oncol Biol Phys 56:716–725

    Article  PubMed  Google Scholar 

  • Fournier-Bidoz N, Kirova Y, Campana F, El Barouky J, Zefkili S, Dendale R, Bollet MA, Mazal A, Fourquet A (2009) Technique alternatives for breast radiation oncology: conventional radiation therapy to Tomotherapy. J Med Phys 34:149

    Article  PubMed  CAS  Google Scholar 

  • Gaffney DK, Prows J, Leavitt DD et al (1997) Electron arc irradiation of the postmastectomy chest wall: clinical results. Radiother Oncol 42:17–24

    Article  PubMed  CAS  Google Scholar 

  • Gaffney DK, Prows J, Leavitt DD et al (2001) Electron arc irradiation of the postmastectomy chest wall: with CT treatment planning: 20-year experience. Int J Radiat Oncol Biol Phys 51:994–1001

    Article  PubMed  CAS  Google Scholar 

  • Gahbauer R, Landberg T, Chavaudra J, Dobbs J et al (2004) Prescribing, recording, and reporting electron beam therapy. J ICRU vol.4

    Google Scholar 

  • Gebski V, Lagleva M, Keech A, Simes J (2006) Langlands AO: Survival Effects of postmastectomy adjuvant radiation therapy using biologically equivalent doses: a clinical perspective. J Natl Cancer Inst 98:26–38

    Article  PubMed  Google Scholar 

  • Gerbi BJ, Khan FM, Deibel FC, Kim TH (1989) Total skin electron arc irradiation using a reclined patient position. Int J Radiat Oncol Biol Phys 17(2):397–404

    Article  PubMed  CAS  Google Scholar 

  • Gez E, Ashaf N, Bar-Deroma R et al (2004) Postmastectomy electron beam chest wall irradiation in women with breast cancer. Int J Radiat Oncol Biol Phys 60:1190–1194

    Article  PubMed  Google Scholar 

  • Giarratano JC, Duerkes RJ, Almond PR (1975) Lead shielding thickness for dose reduction of 7–28MeV electrons. Med Phys 2:336–337

    Article  PubMed  CAS  Google Scholar 

  • Giordano SH, Kuo YF, Freeman JL et al (2005) Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 97:419–424

    Article  PubMed  Google Scholar 

  • Graham P, Fourquet A (2006a) Placing the boost in breast-conservation radiotherapy: a review of the role, indications and techniques for breast-boost radiotherapy. Clin Oncol 18:210

    Article  CAS  Google Scholar 

  • Graham P, Fourquet A (2006b) Placing the boost in breast-conservation radiotherapy: a review of the role, indications and techniques for breast-boost radiotherapy. Clin Oncol 18:210–219

    Article  CAS  Google Scholar 

  • Hehr T, Budach W, Paulsen F et al (1999) Evaluation of predictive factors for local tumor control after electron-beam-rotation irradiation of the chest wall in locally advanced breast cancer. Radiother Oncol 50:283–289

    Article  PubMed  CAS  Google Scholar 

  • Hogstrom KR (1991) Clinical electron beam dosimetry: basic dosimetry date. In: Purdy JA (ed) Advances in radiation oncology physics: dosimetry, treatment planning, and brachytherapy. American Institute of Physics, Inc, Woodbury, pp 390–429

    Google Scholar 

  • Hogstrom KR (2004) Electron beam therapy: dosimetry, planning, and techniques. In: Perez CA, Brady LW, Halperin EC, Schmidt-Ullrich RK (eds) Principles and practice of radiation oncology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hogstrom KR, Fields RS (1983) Use of CT in electron beam treatment planning: current and future development. In: Ling CC, Rogers CC, Morton RJ (eds) Computed tomography in radiation therapy. Raven, New York

    Google Scholar 

  • Hoppe RT (2003) Mycosis fungoides: radiation therapy (review). Dermatol Ther 16:347–354

    Article  PubMed  Google Scholar 

  • IAEA International Atomic Energy Agency TRS-398 (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. International Atomic Energy Agency, Vienna

    Google Scholar 

  • International Commission on Radiation Units, Measurements (1984) ICRU Report No. 35: radiation dosimetry: electron beams with energies between 1 and 50 MeV. International Commission on Radiation Units and Measurements, Washington

    Google Scholar 

  • International Commission on Radiation Units, Measurements (1993) ICRU Report 50: prescribing, recording and reporting photon beam therapy. International Commission on Radiation Units and Measurements, Washington

    Google Scholar 

  • International Commission on Radiation Units, Measurements (1999) ICRU Report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). International Commission on Radiation Units and Measurements, Washington

    Google Scholar 

  • Johnson JM, Khan FM (1994) Dosimetric effects of abutting extended source to surface distance electron fields with photon fields in the treatment of head and neck cancers. Int J Radiat Oncol Biol Phys 28:741–747

    Article  PubMed  CAS  Google Scholar 

  • Khan FM (1982) Calibration and treatment planning of electron beam arc therapy. In: Paliwal B (ed) Proceedings of the symposium on electron dosimetry and arc therapy. AAPM. American Institute of Physics, New York, p 249

    Google Scholar 

  • Khan FM (1984) The physics of radiation therapy. Williams & Wilkins, Baltimore

    Google Scholar 

  • Khan PM (2003) The physics of radiation therapy, 3rd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Khan FM (2010) The physics of radiation therapy, 4th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Khan FM, Moore VC, Levitt SH (1976) Field shaping in electron beam therapy. Br J Radiol 49:883

    Article  PubMed  CAS  Google Scholar 

  • Khan FM, Fullerton GD, Lee JM, Moore VC, Levitt SH (1977) Physical aspects of electron-beam arc therapy. Radiology 124:497–500

    PubMed  CAS  Google Scholar 

  • Khan FM, Deibel FC, Soleimani-Meigooni A (1985) Obliquity correction for electron beams. Med Phys 12:749

    Article  PubMed  CAS  Google Scholar 

  • Kirby AM, Yarnold JR, Evans PM et al (2009) Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position: what does MRI add to X-ray localiszation of titanium clips in the excision cavity wall? Int J Rad Oncol Biol Phys 74:1276–1282

    Article  Google Scholar 

  • Kirova YM, Belembaogo E, Frikha H, Haddad E, Calitchi E, Levy E, Piedbois P, Le Bourgeois JP (1998) Radiotherapy in the management of epidemic Kaposi’s sarcoma: a retrospective study of 643 cases. Radiother Oncol 46:19

    Article  PubMed  CAS  Google Scholar 

  • Kirova YM, Piedbois Y, Haddad E, Levy E, Calitchi E, Marinello G, Le Bourgeois JP (1999a) Radiotherapy in the management of mycosis fungoides: indications, results, prognosis Twenty years experience. Radiother Oncol 51:147

    Article  PubMed  CAS  Google Scholar 

  • Kirova YM, Piedbois Y, Le Bourgeois JP (1999b) Radiotherapy in the management of cutaneous B-cell lymphoma Our experience in 25 cases. Radiother Oncol 52:15

    Article  PubMed  CAS  Google Scholar 

  • Kirova YM, Campana F, Fournier-Bidoz N, Stilhart A, Dendale R, Bollet MA, Fourquet A (2007) Postmastectomy electron beam chest wall irradiation in women with breast cancer: a clinical step toward conformal electron therapy. Int J Radiat Oncol Biol Phys 69:1139–1144

    Article  PubMed  Google Scholar 

  • Kirova YM, Fournier-Bidoz N, Servois V, Laki F, Pollet GA, Salmon R, Thomas A, Dendale R, Bollet MA, Campana F, Fourquet A (2008) How to boost the breast tumor bed? a multidisciplinary approach in eight steps. Int J Radiat Oncol Biol Phys 72:494

    Article  PubMed  Google Scholar 

  • Kirova YM, Castro Pena P, Hijal T, Fournier-Bidoz N, Laki F, Sigal-Zafrani B, Dendale R, Bollet MA, Campana F, Fourquet A (2010) Improving the definition of tumor bed boost with the use of surgical clips and image registration in breast cancer patients. Int J Radiat Oncol Biol Phys

    Google Scholar 

  • Klevenhagen SC (1985) Physics of electron beam therapy. Adam Hilger Ltd, Bristol

    Google Scholar 

  • Klevenhagen SC, Lambert GD, Arbabi A (1982) Backscattering in electron beam therapy for energies between 3 and 35 MeV. Phys Med Biol 27:363–373

    Article  PubMed  CAS  Google Scholar 

  • Kudchadker RJ, Hogstrom KR, Garden AS, McNeese MD, Boyd RA, Antolak JA (2002) Electron conformal radiotherapy using bolus and intensity modulation. Int J Radiat Oncol Biol Phys 53:1023–1037

    Article  PubMed  Google Scholar 

  • Kudchadker RJ, Antolak JA, Morrison WH, Wong PF, Hogstrom KR (2003) Utilization of custom electron bolus in head and neck radiotherapy. J Appl Clin Med Phys A4:321–333

    Article  Google Scholar 

  • Lambert GD, Klevenhagen SC (1982) Penetration of backscattered electrons in polystyrene for energies between 1 and 25 MeV. Phys Med Biol 27:721–725

    Article  CAS  Google Scholar 

  • Le Bourgeois JP, Haddad E, Marinello G, Martin L, Mazeron JJ, Ganem G (1986) The indications for total cutaneous electron beam radiation therapy for mycosis fungoides. Int J Radiat Oncol Biol Phys 13:189

    Article  Google Scholar 

  • Le Bourgeois JP, Chavaudra J, Eschwege F (1992) Breast cancer in Radiothérapie oncologique, 2nd edn. Paris Hermann ed; pp 237–253

    Google Scholar 

  • Leavitt DD, Stewart JR, Moeller JH, Earley L (1992) Electron beam arc therapy. In: Purdy JA (ed) Medical physics monograph 19, advances in radiation oncology physics: dosimetry, treatment, planning and brachytherapy. American Institute of Physics Inc, Woodbury, p 430ff

    Google Scholar 

  • Low DA, Starkschall G, Bujnowski SW, Wang LL, Hogstrom KR (1992) Electron bolus design for radiotherapy treatment planning: bolus design algorithms. Med Phys 19:115–124

    Article  PubMed  CAS  Google Scholar 

  • Magee B, Ribeiro GG, Williams P et al (1991) Use of an electron beam for post-mastectomy radiotherapy: 5-year follow-up of 500 cases. Clin Oncol 3:310–314

    Article  CAS  Google Scholar 

  • Maor MH, Fields RS, Hogstrom KR, van Eys J (1985) Improving the therapeutic ratio of craniospinal irradiation in medulloblastoma. Int J Radiat Oncol Biol Phys 11(4):687–697

    Article  PubMed  CAS  Google Scholar 

  • Maor MH, Hogstrom KR, Fields RS et al (1986) Newer approaches to cerebrospinal irradiation in pediatric brain tumors. In: Brooks BF (ed) Malignant tumors of childhood. The University of Texas Press, Austin, pp 245–254

    Google Scholar 

  • Marinello G, Le Bourgeois JP (1992) Total skin irradiation. In: Bourgeois JP, Chavaudra J, Eschwege F (eds) Radiothérapie oncologique, 2nd edn. Paris Hermann, Paris, pp 531–537

    Google Scholar 

  • McNeese MD, Sinesi C (1986) Radiotherapy for eyelid carcinomas. Cancer Bulletin 38:91

    Google Scholar 

  • Meyer JA, Palta JR, Hogstrom KR (1984) Demonstration of relatively new electron dosimetry measurement techniques on the mevatron 80. Med Phys 11:670–677

    Article  PubMed  CAS  Google Scholar 

  • Nyerick CE, Ochran TG, Boyer AL, Hogstrom KR (1991) Dosimetry characteristics of metallic cones for intraoperative radiotherapy. Int J Radiat Oncol Biol Phys 21:501–510

    Article  PubMed  CAS  Google Scholar 

  • Orecchia R, Veronesi U (2005) Intraoperative electrons. Semin Radiat Oncol 15:76–83

    Article  PubMed  Google Scholar 

  • Overgaard M, Hansen PS, Overgaard J et al (1997) Postoperative radiotherapy in high-risk premenaupausal women with breast cacer who receive adjuvant chemotherapy. N Engl J Med 337:949–955

    Article  PubMed  CAS  Google Scholar 

  • Overgaard M, Jensen MB, Overgaard J et al (1999) Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 353:1641–1648

    Article  PubMed  CAS  Google Scholar 

  • Palta JR, Biggs PJ, Hazle JD, Huq MS, Dahl RA, Ochran TG, Soen J, Dobelbower RR Jr, McCullough EC (1995) Intraoperative electron beam radiation therapy: technique, dosimetry, and dose specification: report of task force 48 of the radiation therapy committee, American association of physicists in medicine. Int J Radiat Oncol Biol Phys 33:725–746

    Article  PubMed  CAS  Google Scholar 

  • Perez CA, Brady LW (1992) Principles and practice of radiation oncology. 2nd ed. J.B. Lippincott Company, Philadelphia, pp 948–969

    Google Scholar 

  • Perkins GH, McNeese MD, Antolak JA, Buchholz TA, Strom EA, Hogstrom KR (2001) A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation. Int J Radiat Oncol Biol Phys 51:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Pohlit W, Manegold KH (1976) Electron-beam dose distribution in inhomogeneous media. In: Kramer S, Suntharalingam N, Zinnenger GF (eds) High energy photons and electrons. John Wiley, New York, p 243

    Google Scholar 

  • Purdy JA, Choi MC, Feldman A (1980) Lipowitz metal shielding thickness for dose reduction of 6–20 MeV electrons. Med Phys 7(3):251–253

    Article  PubMed  CAS  Google Scholar 

  • Ragaz J, Jackson SM, Le N et al (1997) Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 337:956–962

    Article  PubMed  CAS  Google Scholar 

  • Roback DM, Johnson JM, Khan FM, Engeler GP, McGuire WA (1997) The use of tertiary collimation for spinal irradiation with extended SSD electron fields. Int J Radiat Oncol Biol Phys 37(5):1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Romestaing P, Lehingue Y, Carrie C et al (1997) Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol 15:963–968

    PubMed  CAS  Google Scholar 

  • Rustgi SN (1986) Dose distribution under external eye shields for high energy electrons. Int J Radiat Oncol Biol Phys 12(1):141–144

    Article  PubMed  CAS  Google Scholar 

  • Salguero FJ, Palma B, Arrans R, Rosello J, Leal A (2009) Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls. Radiother Oncol 93:625–632

    Article  PubMed  Google Scholar 

  • Sewchand W, Khan FM, Williamson J (1979) Total-body superficial electron-beam therapy using a multiple-field pendulum-arc technique. Radiology 130:493–498

    PubMed  CAS  Google Scholar 

  • Shiu AS, Tung SS, Gastorf RJ, Hogstrom KR, Morrison WH, Peters LJ (1996) Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment. Int J Radiat Oncol Biol Phys 35:599–604

    Article  PubMed  CAS  Google Scholar 

  • Strydom W, Parker W, Olivares M (2003) Electron beams: physical and clinical aspects. In: Podgorsak EB (ed) Review of radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Tapley N, du V (1976) Clinical applications of the electron beam. John Wiley, New York

    Google Scholar 

  • Tung SS, Shiu AS, Starkschall G, Morrison WH, Hogstrom KR (1993) Dosimetric evaluation of total scalp irradiation using a lateral electron–photon technique. Int J Radiat Oncol Biol Phys 27:153–160

    Article  PubMed  CAS  Google Scholar 

  • Wang CC (1989) Radiotherapeutic management and results of T1N0, T2N0 carcinoma of the oral tongue: evaluation of boost techniques. Int J Radiat Oncol Biol Phys 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Wang CC (1991) Intraoral cone for carcinoma of the oral cavity. In: Vaeth JM, Meyer JL (eds) Frontiers of radiation therapy and oncology, Vol 25 : the role of high energy electrons in the treatment of cancer. Karger AG, Basel, pp 128–131

    Google Scholar 

  • Weaver RD, Gerbi BJ, Dusenbery KE (1995) Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters. Int J Radiat Oncol Biol Phys 33:475–478

    Article  PubMed  CAS  Google Scholar 

  • Weaver RD, Gerbi BJ, Dusenbery KE (1998) Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams. Int J Radiat Oncol Biol Phys 41:233–237

    Article  PubMed  CAS  Google Scholar 

  • Whipp EC, Halliwell M (2008) Magnetic resonance imaging appearances in the postoperative breast: the clinical target volume-tumor and its relationship to the chest wall. Int J Rad Oncol Biol Phys 72:49–57

    Article  Google Scholar 

  • Wilson CM, Schreiber DP, Russell JD, Hitchcock P (1992) Electron beam versus photon beam radiation therapy for the treatment of orbital lymphoid tumors. Med Dosim 17:161

    PubMed  CAS  Google Scholar 

  • Wooden KK, Hogstrom KR, Blum P, Gastorf RJ, Cox JD (1996) Whole-limb irradiation of the lower calf using a six-field electron technique. Med Dosim 21:211–218

    Article  PubMed  CAS  Google Scholar 

  • Ysebaert L, Truc G, Dalac S, Lambert D, Petrella T, Barillot I, Naudy S, Horiot JC, Maingon P (2004) Ultimate results of radiation therapy for T1–T2 mycosis fungoides (including reirradiation). Int J Radiat Oncol Biol Phys 58:1128–1134

    Article  PubMed  Google Scholar 

  • Zhu TC, Das IJ, Bjärngard BE (2001) Characteristics of bremsstrahlung in electron beams. Med Phys 8:352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Gerbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerbi, B.J., Kirova, Y.M., Orecchia, R. (2011). Clinical Applications of High-Energy Electrons. In: Levitt, S., Purdy, J., Perez, C., Poortmans, P. (eds) Technical Basis of Radiation Therapy. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_321

Download citation

  • DOI: https://doi.org/10.1007/174_2011_321

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11571-4

  • Online ISBN: 978-3-642-11572-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics