Skip to main content

3D Radiation Treatment Planning and Execution

  • Chapter
  • First Online:
  • 1792 Accesses

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Technological advances have become commercially available and widely implemented. In particular, 3D conformal therapy has become the first step in improving the targeting of dose to the tumor while sparing dose to normal tissue. The treatment planning process including beam design, treatment planning objectives, and dose calculation issues for 3D radiation treatment planning will be reviewed. Topics such as target volume definition, use of imaging, set-up uncertainties, respiration control, and normal tissue tolerance are briefly introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Armstrong JG (1998) Target volume definition for three-dimensional conformal radiation therapy of lung cancer. Br J Radiol 71:587–594

    PubMed  CAS  Google Scholar 

  • Armstrong JG, Zelefsky MJ, Leibel SA et al (1995) Strategy for dose escalation using 3-dimensional conformal radiation therapy for lung cancer. Ann Oncol 6:693–697

    PubMed  CAS  Google Scholar 

  • Armstrong J, Raben A, Zelefsky M et al (1997) Promising survival with three-dimensional conformal radiation therapy for non-small cell lung cancer. Radioth Oncol 44:17–22

    Article  CAS  Google Scholar 

  • Belderbos JS, De Jaeger K, Heemsbergen WD et al (2003) First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy. Radiother Oncol 66:119–126

    Article  PubMed  Google Scholar 

  • Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76:S3–S9

    Article  PubMed  Google Scholar 

  • Bowden P, Fisher R, Mac Manus M et al (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53:566–573

    Article  PubMed  Google Scholar 

  • Chetty IJ, Charland PM, Tyagi N et al (2003) Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media. Med Phys 30:563–573

    Article  PubMed  Google Scholar 

  • Cox JD, Azarnia N, Byhardt RW et al (1990) A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J Clin Oncol 8:1543–1555

    PubMed  CAS  Google Scholar 

  • De Jaeger K, Hoogeman MS, Engelsman M et al (2003) Incorporating an improved dose-calculation algorithm in conformal radiotherapy of lung cancer: re-evaluation of dose in normal lung tissue. Radiother Oncol 69:691–710

    Google Scholar 

  • Ekstrand KE, Barnes WH (1990) Pitfalls in the use of high energy X rays to treat tumors in the lung. Int J Radiat Oncol Biol Phys 18:249–252

    Article  PubMed  CAS  Google Scholar 

  • Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF, Chaell R (2000) Non small cell lung tumors repopulate rapidly during radiation therapy. Int J Radiat Oncol Biol Phys 46:516–517

    Article  PubMed  CAS  Google Scholar 

  • Giraud P, Antoine M, Larrouy A (2000) Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Graham MV, Purdy JA, Emami B et al (1995) Preliminary results of a prospective trial using three dimensional radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 33:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Graham MV, Purdy JA, Emami BE et al (1999) Clinical dose volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    Article  PubMed  CAS  Google Scholar 

  • Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890

    Article  PubMed  Google Scholar 

  • Harris KM, Adams H, Lloyd DCF et al (1993) The effect of apparent size of simulated pulmonary nodules of using three standard CT window settings. Clin Radiol 47:241–244

    Article  PubMed  CAS  Google Scholar 

  • Hayman JA, Martel MK, Ten Haken RK et al (2001) Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol 19:127–136

    PubMed  CAS  Google Scholar 

  • Hazuka MB, Turrisi AT 3rd, Lutz ST et al (1993) Results of high-dose thoracic irradiation incorporating beam’s eye view display in non-small cell lung cancer: a retrospective multivariate analysis. Int J Radiat Oncol Biol Phys 27:273–284

    Article  PubMed  CAS  Google Scholar 

  • ICRU (1993) Prescribing, recording and reporting photon beam therapy, Report 50, ICRU Press, Bethesda

    Google Scholar 

  • ICRU (1999) Prescribing, recording and reporting photon beam therapy (Su lement to ICRU Report 50) ICRU Press, Bethesda

    Google Scholar 

  • Klein EE, Morrison A, Purdy JA et al (1997) A volumetric study of measurements and calculations of lung density corrections for 6 and 18 MV photons. Int J Radiat Oncol Biol Phys 37:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Kong FM, Hayman JA, Griffith KA et al (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 65:1075–1086

    Article  PubMed  Google Scholar 

  • Kubo HD, Len PM, Minohara S et al (2000) Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 27:346–353

    Article  PubMed  CAS  Google Scholar 

  • Kwa SL, Lebesque JV, Theuws JC et al (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR, el-Khatib E, Battista J et al (1985) Lung dose corrections for 6 and 15 MV X rays. Med Phys 12:327–332

    Article  PubMed  CAS  Google Scholar 

  • Marks LB, Munley MT, Bentel GC et al (1997) Physical and biological predictors of changes in whole-lung function following thoracic irradiation. Int J Radiat Oncol Biol Phys 39:563–570

    Article  PubMed  CAS  Google Scholar 

  • Martel MK, Ten Haken RK, Hazuka MB et al (1994) Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 28:575–581

    Article  PubMed  CAS  Google Scholar 

  • Martel MK, Ten Haken RK, Hazuka MB et al (1999) Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer 24:31–37

    Article  PubMed  CAS  Google Scholar 

  • McShan DL, Fraass BA, Lichter AS (1990) Full integration of the beam’s eye view concept into computerized treatment planning. Int J Radiat Oncol Biol Phys 18:1485–1494

    Article  PubMed  CAS  Google Scholar 

  • Mehta M, Scrimger R, Mackie R et al (2001) A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 49:23–33

    Article  PubMed  CAS  Google Scholar 

  • Narayan S, Henning GT, Ten Haken RK et al (2004) Results following treatment to dose of 92.4 or 102.9 Gy on a phase I dose escalation study for non-small cell lung cancer. Lung Cancer 44:79–88

    Article  PubMed  Google Scholar 

  • Oetzel D, Schraube P, Hensley F et al (1995) Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 33:455–460

    Article  PubMed  CAS  Google Scholar 

  • Pelizzari CA (1998) Image processing in stereotactic planning: volume visualization and image registration. Med Dosim 23:137–145

    Article  PubMed  CAS  Google Scholar 

  • Radiation Therapy Oncology Group RTOG 93-11 (1993) A phase I/II dose escalation study using three dimensional conformal radiation therapy in patients with inoperable nonsmall cell lung cancer web page: www.rtog.org

  • Rice RK, Mijnheer BJ, Chin LM (1988) Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys 15:399–409

    Article  PubMed  CAS  Google Scholar 

  • Robertson JM, Ten Haken RK, Hazuka MB et al (1997) Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 37:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig KE, Mychalczak B, Fuks Z et al (2000) Final report of the 70.2 and 75.6 Gy dose levels of a phase I dose escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable non-small cell lung cancer. Cancer J 6:82–87

    PubMed  CAS  Google Scholar 

  • Senan S, de Koste J, Samson M et al (1999) Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother Oncol 53:247–255

    Article  PubMed  CAS  Google Scholar 

  • Senan S, De Ruysscher D, Giraud P et al (2004) Literature-based recommendations for treatment planning and execution in high dose radiotherapy for lung cancer. Radiother Oncol 71:139–146

    Article  PubMed  Google Scholar 

  • Sepenwoolde Y, Lebesque JV, de Jaeger K et al (2003) Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol 55:724–735

    Article  Google Scholar 

  • Sibley GS, Mundt AJ, Shapiro C et al (1995) The treatment of stage III nonsmall cell lung cancer using high dose conformal radiotherapy. Int J Radiat Oncol Biol Phys 33:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Ten Haken RK, Martel MK, Kessler ML et al (1993) Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys 27:689–695

    Article  PubMed  CAS  Google Scholar 

  • Timmerman R, Papiez L, McGarry R et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955

    Article  PubMed  Google Scholar 

  • Wang L, Yorke E, Chui CS (2002) Monte Carlo evaluation of 6 MV intensity modulated radiotherapy plans for head and neck and lung treatments. Med Phys 29:2705–2717

    Article  PubMed  Google Scholar 

  • Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Martel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martel, M.K. (2011). 3D Radiation Treatment Planning and Execution. In: Jeremic, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_302

Download citation

  • DOI: https://doi.org/10.1007/174_2011_302

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19924-0

  • Online ISBN: 978-3-642-19925-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics