Skip to main content

Neurological Applications

  • Chapter
  • First Online:
Book cover Dual Energy CT in Clinical Practice

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Dual energy computed tomography (CT) methods are revolutionizing neurological imaging by refining material characterization using CT, improving the detection of contrast enhancement, and reducing scatter-related artifacts. These techniques improve our accuracy for differentiation of hemorrhage from calcification and contrast staining. They also allow the selection of lower energy X-ray beams that increase the conspicuity of intravascular enhancement, potentially useful in CT angiograms using low contrast doses. A new type of dual-energy CT technology called Gemstone Spectral Imaging (GE healthcare) also allows the selection of X-ray beams at specific energy levels to optimize parenchymal visualization. These applications offer a glimpse of the significant potential of dual-energy technology to expand the role of computed tomography in neuroimaging and cerebrovascular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDTIvol:

Volume CT dose index

CIN:

Contrast-induced nephropathy

CNR:

Contrast-to-noise ratio

CT:

Computed tomography

CTA:

Computed tomography angiography

DE:

Dual energy

DFOV:

Display field of view

FOV:

Field of view

GRE:

Gradient-recalled echo

GSI:

Gemstone spectral imaging

HU:

Hounsfield units

keV:

Kiloelectron volt

kVp:

Peak kilovoltage

ROI:

Region of interest

SFOV:

Scan field of view

SWI:

Susceptibility-weighted imaging

VNC:

Virtual noncontrast

References

  • Abujudeh HH et al (2009) Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 253(1):81–89

    Article  PubMed  Google Scholar 

  • Bahner ML et al (2005) Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol 40(4):229–234

    Article  PubMed  Google Scholar 

  • Balvay D et al (2009) Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT. Radiology 250(3):692–702

    Article  PubMed  Google Scholar 

  • Barnea G, Dick CE (1986) Monte Carlo studies of X-ray scattering in transmission diagnostic radiology. Med Phys 13(4):490–495

    Article  PubMed  CAS  Google Scholar 

  • Barreto M et al (2008) Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr 2(4):234–242

    Article  PubMed  Google Scholar 

  • Barrett BJ et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Invest Radiol 41(11):815–821

    Article  PubMed  CAS  Google Scholar 

  • Buerke B et al (2009) Dual-energy CTA with bone removal for transcranial arteries: intraindividual comparison with standard CTA without bone removal and TOF-MRA. Acad Radiol 16(11):1348–1355

    Article  PubMed  Google Scholar 

  • Cai QY et al (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42(12):797–806

    Article  PubMed  CAS  Google Scholar 

  • Chen Y et al (2009) Dual-energy CT angiography for evaluation of internal carotid artery stenosis and occlusion. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 31(2):215–220

    PubMed  Google Scholar 

  • Dalstra M, Cattaneo PM, Beckmann F (2006) Synchrotron radiation-based microtomography of alveolar support tissues. Orthod Craniofac Res 9(4):199–205

    Article  PubMed  CAS  Google Scholar 

  • Das M et al (2009) Carotid plaque analysis: comparison of dual-source computed tomography (CT) findings and histopathological correlation. Eur J Vasc Endovasc Surg 38(1):14–19

    Article  PubMed  CAS  Google Scholar 

  • Deng K et al (2009) Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography. Clin Radiol 64(5):534–541

    Article  PubMed  CAS  Google Scholar 

  • Dick CE, Soares CG, Motz JW (1978) X-ray scatter data for diagnostic radiology. Phys Med Biol 23(6):1076–1085

    Article  PubMed  CAS  Google Scholar 

  • Dittrich R et al (2007) Low rate of contrast-induced nephropathy after CT perfusion and CT angiography in acute stroke patients. J Neurol 254(11):1491–1497

    Article  PubMed  CAS  Google Scholar 

  • Duerinckx AJ, Macovski A (1978) Polychromatic streak artifacts in computed tomography images. J Comput Assist Tomogr 2(4):481–487

    Article  PubMed  CAS  Google Scholar 

  • Duerinckx AJ, Macovski A (1979) Nonlinear polychromatic and noise artifacts in X-ray computed tomography images. J Comput Assist Tomogr 3(4):519–526

    Article  PubMed  CAS  Google Scholar 

  • Feldkamp T et al (2006) Nephrotoxicity of iso-osmolar versus low-osmolar contrast media is equal in low risk patients. Clin Nephrol 66(5):322–330

    PubMed  CAS  Google Scholar 

  • Ferda J et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19(10):2518–2522

    Article  PubMed  Google Scholar 

  • Granada JF, Feinstein SB (2008) Imaging of the vasa vasorum. Nat Clin Pract Cardiovasc Med 5(suppl 2):S18–S25

    Article  PubMed  Google Scholar 

  • Graser A et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252(2):433–440

    Article  PubMed  Google Scholar 

  • Hainfeld JF et al (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    Article  PubMed  CAS  Google Scholar 

  • Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol 5(4):403–416

    Article  PubMed  CAS  Google Scholar 

  • Hawkes DJ, Jackson DF, Parker RP (1986) Tissue analysis by dual-energy computed tomography. Br J Radiol 59(702):537–542

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsson A, Jung B, Ytterbergh C (1986) Dual energy computed tomography: simulated monoenergetic and material-selective imaging. J Comput Assist Tomogr 10(3):490–499

    PubMed  CAS  Google Scholar 

  • Holmquist F, Nyman U (2006) Eighty-peak kilovoltage 16-channel multidetector computed tomography and reduced contrast-medium doses tailored to body weight to diagnose pulmonary embolism in azotaemic patients. Eur Radiol 16(5):1165–1176

    Article  PubMed  Google Scholar 

  • Holmquist F et al (2009) Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients. Acta Radiol 50(2):181–193

    Article  PubMed  CAS  Google Scholar 

  • Jackson PA et al (2009) Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 2009 Apr 28. [Epub ahead of print]

    Google Scholar 

  • Jin H et al (2002) High resolution three-dimensional visualization and characterization of coronary atherosclerosis in vitro by synchrotron radiation X-ray microtomography and highly localized X-ray diffraction. Phys Med Biol 47(24):4345–4356

    Article  PubMed  Google Scholar 

  • Jones TR et al (2001) Single- versus multi-detector row CT of the brain: quality assessment. Radiology 219(3):750–755

    PubMed  CAS  Google Scholar 

  • Kalva SP et al (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30(3):391–397

    Article  PubMed  Google Scholar 

  • Kane GC et al (2008) Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J Am Coll Cardiol 51(1):89–90

    Article  PubMed  Google Scholar 

  • Kerwin WS et al (2008) MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 59(3):507–514

    Article  PubMed  CAS  Google Scholar 

  • Kim D et al (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665

    Article  PubMed  CAS  Google Scholar 

  • Kim JH et al (2009) Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20(50):505101

    Article  PubMed  Google Scholar 

  • Kinnunen J et al (1990) Improved visualization of posterior fossa with clivoaxial CT scanning plane. Rontgenblatter 43(12):539–542

    PubMed  CAS  Google Scholar 

  • Kuhn MJ et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure. AJR Am J Roentgenol 191(1):151–157

    Article  PubMed  Google Scholar 

  • Kwak HS et al (2005) Comparison of renal damage by iodinated contrast or gadolinium in an acute renal failure rat model based on serum creatinine levels and apoptosis degree. J Korean Med Sci 20(5):841–847

    Article  PubMed  CAS  Google Scholar 

  • Lang EK et al (1981) The incidence of contrast medium induced acute tubular necrosis following arteriography. Radiology 138(1):203–206

    PubMed  CAS  Google Scholar 

  • Langheinrich AC et al (2007) Vasa vasorum and atherosclerosis – Quid novi? Thromb Haemost 97(6):873–879

    PubMed  CAS  Google Scholar 

  • Lell MM et al (2009) Dual energy CTA of the supraaortic arteries: technical improvements with a novel dual source CT system. Eur J Radiol. 2009 Oct 8. [Epub ahead of print]

    Google Scholar 

  • Lell MM et al (2009b) Carotid computed tomography angiography with automated bone suppression: a comparative study between dual energy and bone subtraction techniques. Invest Radiol 44(6):322–328

    Article  PubMed  Google Scholar 

  • Liss P et al (2009) Iodinated contrast media decrease renomedullary blood flow. A possible cause of contrast media-induced nephropathy. Adv Exp Med Biol 645:213–218

    Article  PubMed  CAS  Google Scholar 

  • Marenzi G et al (2009) Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med 150(3):170–177

    PubMed  Google Scholar 

  • Massicotte A (2008) Contrast medium-induced nephropathy: strategies for prevention. Pharmacotherapy 28(9):1140–1150

    Article  PubMed  CAS  Google Scholar 

  • Mekan SF et al (2004) Radiocontrast nephropathy: is it dose related or not? J Pak Med Assoc 54(7):372–374

    PubMed  CAS  Google Scholar 

  • Morcos SK (2009) Contrast-induced nephropathy: are there differences between low osmolar and iso-osmolar iodinated contrast media? Clin Radiol 64(5):468–472

    Article  PubMed  CAS  Google Scholar 

  • Mostrom U, Ytterbergh C (1986) Artifacts in computed tomography of the posterior fossa: a comparative phantom study. J Comput Assist Tomogr 10(4):560–566

    Article  PubMed  CAS  Google Scholar 

  • Nakayama Y et al (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol 187(5):W490–W497

    Article  PubMed  Google Scholar 

  • Nyman U et al (2005) Contrast-medium-Induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46(8):830–842

    Article  PubMed  CAS  Google Scholar 

  • Nyman U et al (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49(6):658–667

    Article  PubMed  CAS  Google Scholar 

  • Papin PJ, Rielly PS (1988) Monte Carlo simulation of diagnostic X-ray scatter. Med Phys 15(6):909–914

    Article  PubMed  CAS  Google Scholar 

  • Perazella MA (2009) Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol 4(2):461–469

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz SR et al (2006) Computed tomography angiography and computed tomography perfusion in ischemic stroke: a step-by-step approach to image acquisition and three-dimensional postprocessing. Semin Ultrasound CT MR 27(3):243–270

    Article  PubMed  Google Scholar 

  • Popovtzer R et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  PubMed  CAS  Google Scholar 

  • Primak AN et al (2009) Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 36(4):1359–1369

    Article  PubMed  CAS  Google Scholar 

  • Rabin O et al (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2):118–122

    Article  PubMed  CAS  Google Scholar 

  • Romano G et al (2008) Contrast agents and renal cell apoptosis. Eur Heart J 29(20):2569–2576

    Article  PubMed  CAS  Google Scholar 

  • Romero JM et al (2009) Arterial wall enhancement overlying carotid plaque on CT angiography correlates with symptoms in patients with high grade stenosis. Stroke 40(5):1894–1896

    Article  PubMed  Google Scholar 

  • Rosovsky MA et al (1996) High-dose administration of nonionic contrast media: a retrospective review. Radiology 200(1):119–122

    PubMed  CAS  Google Scholar 

  • Rozeik C et al (1991) Cranial CT artifacts and gantry angulation. J Comput Assist Tomogr 15(3):381–386

    Article  PubMed  CAS  Google Scholar 

  • Rudnick MR et al (1995) Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol cooperative study. Kidney Int 47(1):254–261

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T et al (2007) Improvement in image quality of noncontrast head images in multidetector-row CT by volume helical scanning with a three-dimensional denoising filter. Radiat Med 25(7):368–372

    Article  PubMed  Google Scholar 

  • Schmidt TG (2009) Optimal “image-based” weighting for energy-resolved CT. Med Phys 36(7):3018–3027

    Article  PubMed  Google Scholar 

  • Schuknecht B (2004) Latest techniques in head and neck CT angiography. Neuroradiology 46(suppl 2):s208–s213

    Article  PubMed  Google Scholar 

  • Solomon R (2005) The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int 68(5):2256–2263

    Article  PubMed  CAS  Google Scholar 

  • Szucs-Farkas Z et al (2008a) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43(12):871–876

    Article  PubMed  Google Scholar 

  • Szucs-Farkas Z et al (2008b) Effect of X-ray tube parameters, iodine concentration, and patient size on image quality in pulmonary computed tomography angiography: a chest-phantom-study. Invest Radiol 43(6):374–381

    Article  PubMed  Google Scholar 

  • Szucs-Farkas Z et al (2009) Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 and 120 kVp protocols in a matched cohort. Invest Radiol 44(12):793–799

    Article  PubMed  Google Scholar 

  • Thomas C et al (2009) Automatic bone and plaque removal using dual energy CT for head and neck angiography: feasibility and initial performance evaluation. Eur J Radiol 2009 Jun 9 [Epub ahead of print]

    Google Scholar 

  • Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT – a pooled analysis of two randomized trials. Eur Radiol 19(4):891–897

    Article  PubMed  Google Scholar 

  • Thomsen HS, Morcos SK, Barrett BJ (2008a) Contrast-induced nephropathy: the wheel has turned 360 degrees. Acta Radiol 49(6):646–657

    Article  PubMed  CAS  Google Scholar 

  • Thomsen HS et al (2008b) The ACTIVE trial: comparison of the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol 43(3):170–178

    Article  PubMed  CAS  Google Scholar 

  • Tran DN et al (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16(2):160–171

    Article  PubMed  Google Scholar 

  • Tsunoo T et al (2008) Measurement of electron density in dual-energy X-ray CT with monochromatic x rays and evaluation of its accuracy. Med Phys 35(11):4924–4932

    Article  PubMed  Google Scholar 

  • Uotani K et al (2009) Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol 19(8):2060–2065

    Article  PubMed  Google Scholar 

  • Wintersperger B et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15(2):334–341

    Article  PubMed  CAS  Google Scholar 

  • Yanaga Y et al (2009) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. AJR Am J Roentgenol 193(3):W220–W229

    Article  PubMed  Google Scholar 

  • Yeoman LJ et al (1992) Gantry angulation in brain CT: dosage implications, effect on posterior fossa artifacts, and current international practice. Radiology 184(1):113–116

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Rapalino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rapalino, O. et al. (2011). Neurological Applications. In: Johnson, T., Fink, C., Schönberg, S., Reiser, M. (eds) Dual Energy CT in Clinical Practice. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_32

Download citation

  • DOI: https://doi.org/10.1007/174_2010_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01739-1

  • Online ISBN: 978-3-642-01740-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics