Skip to main content

Oncology

  • Chapter
  • First Online:
High-Field MR Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1205 Accesses

Abstract

Magnetic resonance imaging is used in oncology in particular for tumor staging, planning of surgery and radiation therapy, and monitoring of tumor response and early detection of recurrence. For all applications high field MRI can be advantageous, because the spatial resolution of the MR images is increasing with field strength, and thus smaller lesions become detectable. Furthermore, functional imaging techniques benefit from the higher field strength, which are used as early indicators for therapy response or tumor recurrence before morphological changes are visible. Several technical limitations such as the increased specific absorption rates (SAR), the limited B1 homogeneity of the transmit coils or the increased image distortion due to susceptibility differences make high field MRI of tumors challenging. Nevertheless, high resolution morphological and functional images of brain tumors have been acquired showing the internal tumor structure, the presence of neo-angiogenic vessels, and the functional changes of the tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage. 51(2):723–733

    Article  PubMed  CAS  Google Scholar 

  • Christoforidis GA, Grecula JC, Newton HB, Kangarlu A, Abduljalil AM, Schmalbrock P, Chakeres DW (2002) Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AJNR Am J Neuroradiol 23(9):1553–1556

    PubMed  Google Scholar 

  • Conolly S, Nishimura DG, Macovski A, Glover G (1988) Variable-rate selective excitation. J Magn Reson 78:440–458

    Google Scholar 

  • Gardener AG, Gowland PA, Francis ST (2009) Implementation of quantitative perfusion imaging using pulsed arterial spin labeling at ultra-high field. Magn Reson Med 61(4):874–882

    Article  PubMed  CAS  Google Scholar 

  • Kang CK, Hong SM, Han JY, Kim KN, Kim SH, Kim YB, Cho ZH (2008) Evaluation of MR angiography at 7.0 Tesla MRI using birdcage radio frequency coils with end caps. Magn Reson Med 60(2):330–338

    Article  PubMed  Google Scholar 

  • Kraff O, Theysohn JM, Maderwald S, Saylor C, Ladd SC, Ladd ME, Barkhausen J (2007) MRI of the knee at 7.0 Tesla. Rofo 179(12):1231–1235

    PubMed  CAS  Google Scholar 

  • Kraff O, Bitz AK, Kruszona S, Orzada S, Schaefer LC, Theysohn JM, Maderwald S, Ladd ME, Quick HH (2009) An eight-channel phased array RF coil for spine MR imaging at 7 T. Invest Radiol 44(11):734–740

    Article  PubMed  Google Scholar 

  • Maderwald S, Ladd SC, Gizewski ER, Kraff O, Theysohn JM, Wicklow K, Moenninghoff C, Wanke I, Ladd ME, Quick HH (2008) To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. MAGMA 21(1–2):159–167

    Article  PubMed  Google Scholar 

  • Mönninghoff C, Maderwald S, Theysohn JM, Schütt P, Gauler T, Kraff O, Ladd ME, Ladd SC, Wanke I (2010) Imaging of brain metastases of bronchial carcinomas with 7 T MRI—initial results. Rofo 182(9):764–772

    PubMed  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Ouwerkerk R (2007) Sodium magnetic resonance imaging: from research to clinical use. J Am Coll Radiol 4(10):739–741

    Article  PubMed  Google Scholar 

  • van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47(4):1425–1434

    Article  PubMed  Google Scholar 

  • von Morze C, Xu D, Purcell DD, Hess CP, Mukherjee P, Saloner D, Kelley DA, Vigneron DB (2007) Intracranial time-of-flight MR angiography at 7T with comparison to 3T. J Magn Reson Imaging 26(4):900–904

    Article  Google Scholar 

  • Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, Morris PE, Clemence M, Francis ST, Bowtell RW, Gowland PA (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21(1–2):121–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bock, M., Delorme, S., Gerigk, L. (2012). Oncology. In: Hennig, J., Speck, O. (eds) High-Field MR Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_105

Download citation

  • DOI: https://doi.org/10.1007/174_2010_105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85087-8

  • Online ISBN: 978-3-540-85090-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics