Skip to main content

Contrasts, Mechanisms and Sequences

  • Chapter
  • First Online:
High-Field MR Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1308 Accesses

Abstract

Since its beginnings, the main magnetic field strength of MR-systems has constantly been increased for high resolution spectrometers, small animal imaging systems and clinical MRI. The obvious motivation is the higher signal-to-noise ratio achievable. However, other effects that result from changes in the relaxation times, the ratio of the object extensions with respect to the RF wave length, or the deposited energy have to be considered. The basic physical effects and their consequences for the most common measurement methods, such as fast gradient echo, turbo spin echo and echo planar imaging are presented and discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn CB, Kim JH, Cho ZH (1986) High-speed spiral-scan echo planar NMR imaging-I. IEEE Trans Med Imaging 5:2–7

    Article  PubMed  CAS  Google Scholar 

  • Alsop DC (1997) The sensitivity of low flip angle RARE imaging. Magn Reson Med 37:176–184

    Article  PubMed  CAS  Google Scholar 

  • Andersson JL, Skare S (2002) A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage 16:177–199

    Article  PubMed  Google Scholar 

  • Atkinson D, Hill DL, Stoyle PN et al (1999) Automatic compensation of motion artifacts in MRI. Magn Reson Med 41:163–170

    Article  PubMed  CAS  Google Scholar 

  • Bammer R, Aksoy M, Liu C (2007) Augmented generalized SENSE reconstruction to correct for rigid body motion. Magn Reson Med 57:90–102

    Article  PubMed  Google Scholar 

  • Bangerter NK, Hargreaves BA, Vasanawala SS et al (2004) Analysis of multiple-acquisition SSFP. Magn Reson Med 51:1038–1047

    Article  PubMed  Google Scholar 

  • Baudrexel S, Volz S, Preibisch C et al (2009) Rapid single-scan T 2*-mapping using exponential excitation pulses and image-based correction for linear background gradients. Magn Reson Med 62:263–268

    Article  PubMed  Google Scholar 

  • Bernstein MA, Huston J 3rd, Ward HA (2006) Imaging artifacts at 3.0 T. J Magn Reson Imaging 24:735–746

    Article  PubMed  Google Scholar 

  • Bieri O, Scheffler K (2006) On the origin of apparent low tissue signals in balanced SSFP. Magn Reson Med 56:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  • Busse RF (2004) Reduced RF power without blurring: correcting for modulation of refocusing flip angle in FSE sequences. Magn Reson Med 51:1031–1037

    Article  PubMed  Google Scholar 

  • Busse RF, Hariharan H, Vu A et al (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 55:1030–1037

    Article  PubMed  Google Scholar 

  • Busse RF, Brau AC, Vu A et al (2008) Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 60:640–649

    Article  PubMed  Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  • Casselman JW, Kuhweide R, Deimling M et al (1993) Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR 14:47–57

    PubMed  CAS  Google Scholar 

  • Chen Z, Johnston LA, Kwon DH et al (2010) An optimised framework for reconstructing and processing MR phase images. Neuroimage 49:1289–1300

    Article  PubMed  Google Scholar 

  • Cho ZH, Ro YM, Park ST et al (1996) NMR functional imaging using a tailored RF gradient echo sequence: a true susceptibility measurement technique. Magn Reson Med 35:1–5

    Article  PubMed  CAS  Google Scholar 

  • Collins CM, Li S, Smith MB (1998) SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil. Specific energy absorption rate. Magn Reson Med 40:847–856

    Article  PubMed  CAS  Google Scholar 

  • Constable RT, Spencer DD (1999) Composite image formation in z-shimmed functional MR imaging. Magn Reson Med 42:110–117

    Article  PubMed  CAS  Google Scholar 

  • Constable RT, Anderson AW, Zhong J et al (1992) Factors influencing contrast in fast spin-echo MR imaging. Magn Reson Imaging 10:497–511

    Article  PubMed  CAS  Google Scholar 

  • Deichmann R, Gottfried JA, Hutton C et al (2003) Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19:430–441

    Article  PubMed  CAS  Google Scholar 

  • Derbyshire JA, Wright GA, Henkelman RM et al (1998) Dynamic scan-plane tracking using MR position monitoring. J Magn Reson Imaging 8:924–932

    Article  PubMed  CAS  Google Scholar 

  • Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415

    Article  PubMed  CAS  Google Scholar 

  • Duyn JH, van Gelderen P, Li TQ et al (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 104:11796–11801

    Article  PubMed  CAS  Google Scholar 

  • Edelstein WA, Hutchison JM, Johnson G et al (1980) Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 25:751–756

    Article  PubMed  CAS  Google Scholar 

  • Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263

    PubMed  CAS  Google Scholar 

  • Elliott AM, Bernstein MA, Ward HA et al (2007) Nonlinear averaging reconstruction method for phase-cycle SSFP. Magnetic resonance imaging 25:359–364

    Article  PubMed  Google Scholar 

  • Feinberg DA, Hale JD, Watts JC et al (1986) Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 161:527–531

    PubMed  CAS  Google Scholar 

  • Fischer HW, Rinck PA, Van Haverbeke Y et al (1990) Nuclear relaxation of human brain gray and white matter: analysis of field dependence and implications for MRI. Magn Reson Med 16:317–334

    Article  PubMed  CAS  Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29:139–144

    Article  PubMed  CAS  Google Scholar 

  • Freeman R, Hill H (1971) Phase and intensity anomalities in Fourier transform NMR. J Magn Reson 4:366–383

    CAS  Google Scholar 

  • Friston KJ, Ashburner J, Poline JB et al (1995) Spatial realignment and normalization of images. Hum Brain Mapp 2:165–189

    Article  Google Scholar 

  • Gieseke J, Wattjes M, Lutterbey G et al (2004) Ultra fast T2-weighted TSE sequences using flip angle sweep with half-fourier and SENSE at 3 T. Neuroradiology 46(Suppl 1):122

    Google Scholar 

  • Glover GH (1999) 3D z-shim method for reduction of susceptibility effects in BOLD fMRI. Magn Reson Med 42:290–299

    Article  PubMed  CAS  Google Scholar 

  • Glover GH, Lee AT (1995) Motion artifacts in fMRI: comparison of 2DFT with PR and spiral scan methods. Magn Reson Med 33:624–635

    Article  PubMed  CAS  Google Scholar 

  • Glover GH, Noll DC (1993) Consistent projection reconstruction (CPR) techniques for MRI. Magn Reson Med 29:345–351

    Article  PubMed  CAS  Google Scholar 

  • Gyngell M (1989) The steady-state signals in short-repetition-time sequences. J Magn Reson 81:474–483

    CAS  Google Scholar 

  • Haacke EM, Xu Y, Cheng YC et al (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  • Haake E, Brown R, Thompson M et al (1999) Fast imaging in the steady state. In: Haacke E, Brown R, Thompson M, Venkatesan R (eds) Magnetic resonance imaging: physical principles and sequence design, Wiley, New York, pp 451–512

    Google Scholar 

  • Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  • He X, Yablonskiy DA (2009) Biophysical mechanisms of phase contrast in gradient echo MRI. Proc Natl Acad Sci USA 106:13558–13563

    Article  PubMed  CAS  Google Scholar 

  • Henkelman RM, Hardy PA, Bishop JE et al (1992) Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 2:533–540

    Article  PubMed  CAS  Google Scholar 

  • Hennig J (1988) Multiecho imaging sequences with low refocusing flip angles. J Magn Reson 78:397–407

    Google Scholar 

  • Hennig J (1991) Echoes—How to generate, recognize, use or avoid them in MR-imaging sequences. Part I + II. Concepts Magn Reson 3:125–143, 179–192

    Google Scholar 

  • Hennig J, Scheffler K (2000) Easy improvement of signal-to-noise in RARE-sequences with low refocusing flip angles. Magn Reson Med 44:983–985

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46:6–12

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49:527–535

    Article  PubMed  Google Scholar 

  • Hennig J, Weigel M, Scheffler K (2004) Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)-algorithm: principles and applications to hyperecho and TRAPS sequences. Magn Reson Med 51:68–80

    Article  PubMed  Google Scholar 

  • Himmelreich U, Dresselaers T (2009) Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 48:112–124

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann MB, Stadler J, Kanowski M et al (2009) Retinotopic mapping of the human visual cortex at a magnetic field strength of 7 T. Clin Neurophysiol 120:108–116

    Article  PubMed  Google Scholar 

  • Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67

    Article  PubMed  CAS  Google Scholar 

  • Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34:65–73

    Article  PubMed  CAS  Google Scholar 

  • Jezzard P, Duewell S, Balaban RS (1996) MR relaxation times in human brain: measurement at 4 T. Radiology 199:773–779

    PubMed  CAS  Google Scholar 

  • Kaiser R, Bartholdi E, Ernst R (1974) Diffusion and field-gradient effects in NMR Fourier spectroscopy. J Chem Phys 60:2057–2061

    Article  Google Scholar 

  • Katscher U, Bornert P, Leussler C et al (2003) Transmit SENSE. Magn Reson Med 49:144–150

    Article  PubMed  Google Scholar 

  • Kiefer B, Grässner J, Hausmann R (1994) Image acquisition in a second with half-Fourier-acquisition single-shot turbo spin echo. J Magn Reson Imaging 4:86

    Google Scholar 

  • Kim B, Boes JL, Bland PH et al (1999) Motion correction in fMRI via registration of individual slices into an anatomical volume. Magn Reson Med 41:964–972

    Article  PubMed  CAS  Google Scholar 

  • Koenig SH, Brown RD 3rd, Adams D et al (1984) Magnetic field dependence of 1/T 1 of protons in tissue. Invest Radiol 19:76–81

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Welti I, Ernst RR (1975) NMR Fourier zeugmatography. J Magn Reson 18:69–83

    CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Article  PubMed  CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  • Lauterbur PC (1974) Magnetic resonance zeugmatography. Pure Appl Chem 40:149–157

    Article  CAS  Google Scholar 

  • Le Roux P, Hinks RS (1993) Stabilization of echo amplitudes in FSE sequences. Magn Reson Med 30:183–190

    Article  PubMed  CAS  Google Scholar 

  • Lebel RM, Wilman AH (2007) Intuitive design guidelines for fast spin echo imaging with variable flip angle echo trains. Magn Reson Med 57:972–975

    Article  PubMed  Google Scholar 

  • Lebel RM, Wilman AH (2009) Time-efficient fast spin echo imaging at 4.7 T with low refocusing angles. Magn Reson Med 62:96–105

    Article  PubMed  Google Scholar 

  • Li TQ, van Gelderen P, Merkle H et al (2006) Extensive heterogeneity in white matter intensity in high-resolution T 2*-weighted MRI of the human brain at 7.0 T. Neuroimage 32:1032–1040

    Article  PubMed  Google Scholar 

  • Liu C, Bammer R, Kim DH et al (2004) Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn Reson Med 52:1388–1396

    Article  PubMed  Google Scholar 

  • Luo J, He X, d’Avignon DA et al (2010) Protein-induced water 1H MR frequency shifts: contributions from magnetic susceptibility and exchange effects. J Magn Reson 202:102–108

    Article  PubMed  CAS  Google Scholar 

  • Maclaren J, Speck O, Stucht D et al (2010) Navigator accuracy requirements for prospective motion correction. Magn Reson Med 63:162–170

    PubMed  Google Scholar 

  • Mansfield P (1984) Real-time echo-planar imaging by NMR. Br Med Bull 40:187–190

    PubMed  CAS  Google Scholar 

  • Mansfield P, Maudsley AA (1977) Planar spin imaging by NMR. J Magn Reson 27:101–119

    CAS  Google Scholar 

  • Mao W, Smith MB, Collins CM (2006) Exploring the limits of RF shimming for high-field MRI of the human head. Magn Reson Med 56:918–922

    Article  PubMed  Google Scholar 

  • Martin WR, Wieler M, Gee M (2008) Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 70:1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  • Melki PS, Mulkern RV, Panych LP et al (1991) Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging 1:319–326

    Article  PubMed  CAS  Google Scholar 

  • Melki PS, Jolesz FA, Mulkern RV (1992) Partial RF echo-planar imaging with the FAISE method. II. Contrast equivalence with spin-echo sequences. Magn Reson Med 26:342–354

    Article  PubMed  CAS  Google Scholar 

  • Michaeli S, Garwood M, Zhu XH et al (2002) Proton T 2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr–Purcell spin echoes at 4 T and 7 T. Magn Reson Med 47:629–633

    Article  PubMed  CAS  Google Scholar 

  • Morgan PS, Bowtell RW, McIntyre DJ et al (2004) Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method. J Magn Reson Imaging 19:499–507

    Article  PubMed  Google Scholar 

  • Mugler JP (2007) Signal and contrast properties of very-long spin-echo trains for 3D T2-weighted turbo-spin-echo imaging; Berlin, Germany, p 1716

    Google Scholar 

  • Mugler JP, Bao S, Mulkern RV et al (2000a) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899

    PubMed  Google Scholar 

  • Mugler JP, Kiefer B, Brookeman JR (2000b) Three-dimensional T2-weighted imaging of the brain using very long spin-echo trains, Denver, USA, p 687

    Google Scholar 

  • Mugler JP, Wald LL, Brookeman JR (2001) T2-weighted 3D spin-echo train imaging of the brain at 3 Tesla: reduced power deposition using low flip-angle refocusing RF pulses. 2001; Glasgow, United Kingdom, p 438

    Google Scholar 

  • Mulkern RV, Wong ST, Winalski C et al (1990) Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imaging 8:557–566

    Article  PubMed  CAS  Google Scholar 

  • Mulkern RV, Melki PS, Jakab P et al (1991) Phase-encode order and its effect on contrast and artifact in single-shot RARE sequences. Med Phys 18:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Noll DC (1997) Multishot rosette trajectories for spectrally selective MR imaging. IEEE Trans Med Imaging 16:372–377

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Ooi MB, Krueger S, Thomas WJ et al (2009) Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 62:943–954

    Article  PubMed  Google Scholar 

  • Ordidge RJ, Gorell JM, Deniau JC et al (1994) Assessment of relative brain iron concentrations using T 2-weighted and T 2*-weighted MRI at 3 Tesla. Magn Reson Med 32:335–341

    Article  PubMed  CAS  Google Scholar 

  • Oshio K, Feinberg DA (1991) GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med 20:344–349

    Article  PubMed  CAS  Google Scholar 

  • Patel MR, Klufas RA, Alberico RA et al (1997) Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain. AJNR Am J Neuroradiol 18:1635–1640

    PubMed  CAS  Google Scholar 

  • Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  PubMed  CAS  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  • Qin L, van Gelderen P, Derbyshire JA et al (2009) Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 62:924–934

    Article  PubMed  Google Scholar 

  • Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277

    PubMed  CAS  Google Scholar 

  • Robson MD, Gore JC, Constable RT (1997) Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med 38:733–740

    Article  PubMed  CAS  Google Scholar 

  • Rooney WD, Johnson G, Li X et al (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318

    Article  PubMed  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM et al (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  • Scheffler K (1999) A pictorial description of steady-states in rapid magnetic resonance imaging. Concepts Magn Reson 11:291–304

    Article  Google Scholar 

  • Scheffler K, Seifritz E, Bilecen D et al (2001) Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results. NMR Biomed 14:490–496

    Article  PubMed  CAS  Google Scholar 

  • Sobol WT, Gauntt DM (1996) On the stationary states in gradient echo imaging. J Magn Reson Imaging 6:384–398

    Article  PubMed  CAS  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  PubMed  CAS  Google Scholar 

  • Speck O (2005) Spin-echo based T1-contrast at 3 T: the problem and a simple solution. Proceedings of the 13th Annual Meeting of the ISMRM, Miami Beach, USA, p 2197

    Google Scholar 

  • Speck O, Hennig J, Zaitsev M (2006) Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects. MAGMA 19:55–61

    Article  PubMed  CAS  Google Scholar 

  • Speck O, Stadler J, Zaitsev M (2008) High resolution single-shot EPI at 7 T. MAGMA 21:73–86

    Article  PubMed  Google Scholar 

  • Stenger VA, Boada FE, Noll DC (2000) Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T(*)(2)-weighted functional MRI. Magn Reson Med 44:525–531

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff RH, Mader I, Kuker W et al (2008) Hyperecho-turbo spin-echo sequences at 3 T: clinical application in neuroradiology. AJNR Am J Neuroradiol 29:956–961

    Article  PubMed  CAS  Google Scholar 

  • Thesen S, Heid O, Mueller E et al (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465

    Article  PubMed  CAS  Google Scholar 

  • Weigel M, Hennig J (2006) Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 55:826–835

    Article  PubMed  Google Scholar 

  • Weigel M, Hennig J (2008) Development and optimization of T2 weighted methods with reduced RF power deposition (Hyperecho-TSE) for magnetic resonance imaging. Zeitschrift fur medizinische Physik 18:151–161

    Article  PubMed  Google Scholar 

  • Weigel M, Zaitsev M, Hennig J (2007) Inversion recovery prepared turbo spin echo sequences with reduced SAR using smooth transitions between pseudo steady states. Magn Reson Med 57:631–637

    Article  PubMed  Google Scholar 

  • Welch EB, Felmlee JP, Ehman RL et al (2002a) Motion correction using the k-space phase difference of orthogonal acquisitions. Magn Reson Med 48:147–156

    Article  Google Scholar 

  • Welch EB, Manduca A, Grimm RC et al (2002b) Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 47:32–41

    Article  Google Scholar 

  • Wesbey GE, Moseley ME, Ehman RL (1984a) Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation. Invest Radiol 19:484–490

    Article  PubMed  CAS  Google Scholar 

  • Wesbey GE, Moseley ME, Ehman RL (1984b) Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol 19:491–498

    Article  PubMed  CAS  Google Scholar 

  • Williamson DS, Mulkern RV, Jakab PD et al (1996) Coherence transfer by isotropic mixing in Carr–Purcell–Meiboom–Gill imaging: implications for the bright fat phenomenon in fast spin-echo imaging. Magn Reson Med 35:506–513

    Article  PubMed  CAS  Google Scholar 

  • Woessner DE (1961) Effects of diffusion in nuclear magnetic resonance spin-echo experiments. J Chem Phys 34:2057–2061

    Article  CAS  Google Scholar 

  • Zaitsev M, Hennig J, Speck O (2004) Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med 52:1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Zaitsev M, Dold C, Sakas G et al (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31:1038–1050

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Constable RT (2002) Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med 48:137–146

    Article  PubMed  Google Scholar 

  • Zhong K, Leupold J, von Elverfeldt D et al (2008) The molecular basis for gray and white matter contrast in phase imaging. Neuroimage 40:1561–1566

    Article  PubMed  Google Scholar 

  • Zur Y, Wood ML, Neuringer LJ (1991) Spoiling of transverse magnetization in steady-state sequences. Magn Reson Med 21:251–263

    Article  PubMed  CAS  Google Scholar 

  • Zur Y, Stokar S, Bendel P (1988) An analysis of fast imaging sequences with steady-state transverse magnetization refocusing. Magn Reson Med 6:175–193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Speck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Speck, O., Weigel, M., Scheffler, K. (2012). Contrasts, Mechanisms and Sequences. In: Hennig, J., Speck, O. (eds) High-Field MR Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_101

Download citation

  • DOI: https://doi.org/10.1007/174_2010_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85087-8

  • Online ISBN: 978-3-540-85090-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics