Skip to main content

Part of the book series: Advances in Polymer Science ((POLYMER,volume 275))

Abstract

Driven by the desire to find an alternative way of vulcanizing elastomers without sulfur, researchers have widely explored ionic crosslinking techniques. The opportunity was taken to play with the functionality of the host polymer and its modification process to develop nanostructured ionic elastomers. Neutralization of polar elastomers by various divalent metal cations has been the route most employed for fabrication of this class of material. Ionic association or aggregation on the molecular level results in microphase separation of certain regions and, hence, enables easier processing. Thermally labile ionic domains introduced into the network make the entire material thermoresponsive and, therefore, it is possible to obtain reversible transition of dynamic mechanical properties. The unique network structure of these materials has led to outstanding physical properties that have not been achieved so far for conventional sulfidic networks. Consequently, many multifunctional and smart materials have been envisaged and designed using these systems. A detailed overview is provided on the various nanostructured ionic elastomers developed over the years. It would not be exaggerating to mention in the context of the discussion that nanostructured ionic elastomers will definitely open up new horizons in materials research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Treloar LRG (2005) The physics of rubber elasticity. OUP, Oxford

    Google Scholar 

  2. Flory PJ (1985) Molecular theory of rubber elasticity. Polym J 17:1–12

    Google Scholar 

  3. Hofmann W (1989) Rubber technology handbook. Oxford University Press, Oxford

    Google Scholar 

  4. Schüssele AC, Nübling F, Thomann Y, Carstensen GB, Speck T, Mülhaupt R (2012) Macromol Mater Eng 297:411–419

    Article  Google Scholar 

  5. Rees RW, Vaughan DJ (1965) Polym Prepr (Am Chem Soc Div Polym Chem) 6:287

    Google Scholar 

  6. Eisenberg A (1970) Clustering of ions in organic polymers—a theoretical approach. Macromolecules 3:147–154

    Article  CAS  Google Scholar 

  7. Basu D, Das A, Stöckelhuber KW, Jehnichen D, Formanek P, Sarlin E, Vuorinen J, Heinrich G (2014) Evidence for an in-situ developed polymer phase in ionic elastomers. Macromolecules 47(10):3436–3450

    Google Scholar 

  8. MacKnight WJ, Lundberg RD (1984) Elastomeric ionomers. Rubber Chem Technol 57(3):652–663

    Google Scholar 

  9. Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107

    Article  CAS  Google Scholar 

  10. Hird B, Eisenberg A (1992) Sizes and stabilities of multiplets and clusters in carboxylated and sulfonated styrene ionomers. Macromolecules 25:6466–6474

    Article  CAS  Google Scholar 

  11. MacKnight WJ (1987) Available ionomers. In: Pineri M, Eisenberg A (eds) Structure and properties of ionomers. NATO science series C: mathematical and physical sciences, vol 198. Reidel, Dordrecht, pp 1–9

    Google Scholar 

  12. MacKnight WJ, Earnest TR (1981) Macromol Rev 16:41

    Google Scholar 

  13. Bazuin GC, Eisenberg A (1981) Ind Eng Chem Prod Res Dev 20:271

    Article  CAS  Google Scholar 

  14. Khokhlov AR, Dormidontova EF (1997) Self-organization in ion-containing polymer systems. Phys Usp 40:109–124

    Google Scholar 

  15. Nyrkova IA, Khokhlov AR, Doi M (1993) Microdomains in block copolymers and multiplets in ionomers: parallels in behavior. Macromolecules 26:3601–3610

    Article  CAS  Google Scholar 

  16. Eisenberg A (1967) Ionic forces in polymers. Adv Polym Sci 5:59–112

    Google Scholar 

  17. McGrath JE (ed) (1981) Anionic polymerization: kinetics, mechanisms, and synthesis. ACS Symposium Series, vol 166. American Chemical Society, Washington

    Google Scholar 

  18. Basu D, Das A, Stöckelhuber KW, Wagenknecht U, Heinrich G (2014) Advances in layered double hydroxide (LDH)-based elastomer composites. Prog Polym Sci 39:594–626

    Article  CAS  Google Scholar 

  19. Masala O, Seshadri R (2004) Synthesis routes for large volumes of nanoparticles. Annu Rev Mater Res 34:41–81

    Article  CAS  Google Scholar 

  20. Lundberg RD, Markowski HS (1980) A comparison of sulfonate and carboxylate ionomers. In: Eisenberg A (ed) Ions in polymers. ACS advances in chemistry series, vol 187. American Chemical Society, Washington, pp 21–36

    Google Scholar 

  21. Jenkins DK, Duck EW (1975) In: Holliday L (ed) Ionic polymers. Halstead Press, Wiley, New York (chap. 3)

    Google Scholar 

  22. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wiessner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630

    Article  CAS  Google Scholar 

  23. Basu D (2015) Role of zinc containing compounds in nitrile rubber based micro-and nanocomposites. Thesis in TU Dresden, Germany

    Google Scholar 

  24. Ibarra L, Marcos-Fernández A, Alzorriz M (2002) Mechanistic approach to the curing of carboxylated nitrile rubber (XNBR) by zinc peroxide/zinc oxide. Polymer 43:1649–1655

    Article  CAS  Google Scholar 

  25. Ibarra L, Alzorriz M (2003) Ionic elastomers based on carboxylated nitrile rubber and calcium oxide. J Appl Polym Sci 87:805–813

    Article  CAS  Google Scholar 

  26. Ibarra L, Alzorriz M (2007) Ionic elastomers based on carboxylated nitrile rubber and magnesium oxide. J Appl Polym Sci 103:1894–1899

    Article  CAS  Google Scholar 

  27. Tungchaiwattana S, Musa MS, Yan J, Lovell PA, Shaw P, Saunders BR (2014) The role of acrylonitrile in controlling the structure and properties of nanostructured ionomer films. Soft Matter 10:4725–4734

    Google Scholar 

  28. Chakraborty SK, Bhowmick AK, De SK (1981) Mixed cross-link systems in elastomers. J Macromol Sci Polym Rev 21:313–332

    Google Scholar 

  29. Jong L (2005) Viscoelastic properties of ionic polymer composites reinforced by soy protein isolate. J Polym Sci B Polym Phys 43:3503–3518

    Article  CAS  Google Scholar 

  30. Malmierca MA, González-Jiménez A, Mora-Barrantes I, Posadas P, Rodríguez A, Ibarra L, Nogales A, Saalwächter K, Valentín JL (2014) Characterization of network structure and chain dynamics of elastomeric ionomers by means of 1H low-field NMR. Macromolecules 47:5655–5667

    Article  CAS  Google Scholar 

  31. Kurian T, Khastgir D, De PP, Tripathy DK, De SK, Peiffer DG (1995) Reinforcement of EPDM-based ionic thermoplastic elastomer by carbon black. Polymer 36:3875–3884

    Article  CAS  Google Scholar 

  32. Markowski HS, Lundberg RD, Westerman L, Bock J (1980) Synthesis and properties of sulfonated EPDM. In: Eisenberg A (ed) Ions in polymers. ACS, vol 187. American Chemical Society, Washington, pp 3–19

    Google Scholar 

  33. Kurian T, De PP, Tripathy DK, De SK, Peiffer DG (1996) Effect of clay on properties of ionic thermoplastic elastomer based on EPDM. J Appl Polym Sci 62:1729–1734

    Google Scholar 

  34. Ghosh SK, Bhattacharya AK, De PP, Khastagir D, De SK (2001) Effect of zinc stearate on properties of melt processable ionomer based on sodium salt of sulfonated maleated EPDM rubber. Plast Rubber Compos 1:16–22

    Article  Google Scholar 

  35. Yano S, Nagao N, Hattori M, Hirasawa E, Tadano K (1992) Dielectric relaxations of ethylene ionomers. Macromolecules 25:368

    Article  CAS  Google Scholar 

  36. Yano S, Tadano K, Nagao N, Kutsumizu S, Tachino H, Hirasawa E (1992) Dielectric relaxation studies on water absorption of ethylene ionomers. Macromolecules 25:7168

    Article  CAS  Google Scholar 

  37. MacKnight WJ, McKenna LW, Read BE (1968) Properties of ethylene-methacrylic acid copolymers and their sodium salts: mechanical relaxations. J Appl Phys 38:4208

    Article  Google Scholar 

  38. Mandal UK, Tripathy DK, De SK (1995) Effect of silica filler on dynamic mechanical properties of ionic elastomer based on carboxylated nitrile rubber. J Appl Polym Sci 55:1185–1191

    Article  CAS  Google Scholar 

  39. Mandal UK, Tripathy DK, De SK (1993) Moving die rheometry and dynamic-mechanical studies on the effect of reinforcing carbon-black filler on ionomer formation during cross-linking of carboxylated nitrile rubber by zinc-oxide. Polymer 34:3832–3836

    Article  Google Scholar 

  40. Mandal UK, Tripathy DK, De SK (1995) Effect of reinforcing carbon black fillers on dynamic mechanical properties of ionic elastomer based on carboxylated nitrile rubber. Plast Rubber Comp Proc Appl 24:19–25

    CAS  Google Scholar 

  41. Datta S, De SK, Kontos EG, Wefer JM (1996) Ionic thermoplastic elastomer based on maleated EPDM rubber. I. Effect of zinc stearate. J Appl Polym Sci 61:177–186.

    Google Scholar 

  42. Navratil M, Eisenberg A (1984) Ion clustering and viscoelastic relaxation in styrene-based ionomers. III. Effect of counterions, carboxylic groups, and plasticizers. Macromolecules 7:84–89

    Google Scholar 

  43. Weiss RA, Fitzerald JJ, Kim D (1991) Viscoelastic behavior of plasticized sulfonated polystyrene ionomers. Macromolecules 24:1064–1070

    Article  CAS  Google Scholar 

  44. Lundberg RD (1987) Ionomer solution behavior. In: Pineri M, Eisenberg A (eds) Structure and properties of ionomers. NATO science series C, vol 198. Reidel, Dordrecht, pp 387–397

    Google Scholar 

  45. Agarwal PK, Peiffer DG (1987) Viscoelastic behaviour of blends of ionic thermoplastic elastomers and their precursors. Polym Commun 28:186–190

    Article  CAS  Google Scholar 

  46. van der Mee MAJ, I’Abee RMA, Portale G, Goossens JGP, van Duin M (2008) Synthesis, structure, and properties of ionic thermoplastic elastomers based on maleated ethylene/propylene copolymers. Macromolecules 41:5493–5501

    Article  Google Scholar 

  47. Brenner D, Lundberg RD (1977) Novel flexible foams based on an ionic elastomer. J Cell Plast 13:270–275

    Article  CAS  Google Scholar 

  48. Drake EN (1994) Polym Prepr Am Chem Soc Div Polym Chem 35:14

    Google Scholar 

  49. Jaudouin O, Robin JJ, Lopez-Cuesta JM, Perrin D, Imbert C (2012) Ionomer-based polyurethanes: a comparative study of properties and applications. Polym Int 61:495–510

    Article  CAS  Google Scholar 

  50. Dieterich D, Keberle W, Wilt H (1970) Polyurethane ionomers, a new class of block polymers. Angew Chem Int Ed Engl 9:40–50

    Google Scholar 

  51. Hwang KKS, Yang C-Z, Cooper SL (1981) Properties of polyether-polyurethane zwitterionomers. Polym Eng Sci 21:1027–1036

    Google Scholar 

  52. Yang C-Z, Hwang KKS, Cooper SL (1983) Morphology and properties of polybutadiene-and polyether-polyurethane zwitterionomers. Makromol Chem 184:651–668

    Google Scholar 

  53. Lee JC, Kim BK (1994) Basic structure–property behavior of polyurethane cationomers. J Polym Sci A Polym Chem 32:1983–1989

    Google Scholar 

  54. Estes GM, Cooper SL, Tobolsky AV (1970) J Macromol Sci Rev Macromol Chem 4:313

    Google Scholar 

  55. Agganval SL (ed) (1970) Block polymers. Plenum Press, NewYork

    Google Scholar 

  56. Noshay A, McGrath JE (eds) (1973) Block copolymers. Wiley, New York

    Google Scholar 

  57. Cooper SL, Estes GM (eds) (1979) Multiphase polymers. Adu. Chem. Ser. 176, American Chemical Society, Washington

    Google Scholar 

  58. Clough SB, Schneider NS (1968) J Macromol Sci Phys B2:553

    Google Scholar 

  59. Clough SB, Schneider NS, King AO (1968) J Macromol Sci Phys B2:641

    Google Scholar 

  60. Lee D, Register RA, Yang C, Cooper SL (1988) MDI-based polyurethane ionomers. 1. New small-angle X-ray scattering model. Macromolecules 21:998–1004

    Google Scholar 

  61. Lee D, Register RA, Yang C, Cooper SL (1988) MDI-based polyurethane ionomers. 2. Structure-property relationships. Macromolecules 21:1005–1008

    Google Scholar 

  62. Kim B, Yang J, Yoo S, Lee J (2003) Waterborne polyurethanes containing ionic groups in soft segments. Colloid Polym Sci 281:461–468

    Article  CAS  Google Scholar 

  63. Mondal S, Hu JL (2006) Structural characterization and mass transfer properties of nonporous segmented polyurethane membrane: Influence of hydrophilic and carboxylic group. J Memb Sci 274:219–226

    Article  CAS  Google Scholar 

  64. Nierzwicki W, Rutkowska M (1986) Ionic interactions and microphase separation in urethane elastomers. Polym Commun 27:327–329

    CAS  Google Scholar 

  65. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34:6431–6437

    Article  CAS  Google Scholar 

  66. Chwang CP, Lee SN, Kuo YM, Chao S, Chao DY (2002) On the study of polyurethane ionomer-Part I. Polym Adv Technol 13:285–292

    Article  CAS  Google Scholar 

  67. Chwang CP, Lee SN, Kuo YM, Chao S, Chao DY (2002) On the study of polyurethane ionomer-Part II. Polym Adv Technol 13:293–300

    Article  CAS  Google Scholar 

  68. Kim BY, Lee SY, Lee JS, Baek SH, Choi YJ, Lee JO, Xu M (1998) Polyurethane ionomers having shape memory effects. Polymer 39:2803–2808

    Article  CAS  Google Scholar 

  69. Gogolewski S (1989) Selected topics in biomedical polyurethanes: a review. Colloid Polym Sci 267:757–785

    Article  CAS  Google Scholar 

  70. Barbucci R, Benvenuti M, Dal Maso G, Nocentini M, Tempesti F, Losi M (1989) Synthesis and physicochemical characterization of a new material (PUPA) based on polyurethane and poly(amido-amine) components capable of strongly adsorbing quantities of heparin. Biomaterials 10:299–308

    Article  CAS  Google Scholar 

  71. Barbucci R, Magnani A (1989) Physiochemical characterization and coating of polyurethane with a new heparin-adsorbing material. Biomaterials 10:429–431

    Article  CAS  Google Scholar 

  72. Bakker D, Van Blitterswijk CA, Hesseling SC, Koerten HK, Kuijpers W, Grote JJ (1990) Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear. J Biomed Mater Res 24:489–515

    Article  CAS  Google Scholar 

  73. Bruin P, Jonkman MF, Meijer HJ, Pennings AJ (1990) A new porous polyetherurethane wound covering. J Biomed Mater Res 24:217–226

    Article  CAS  Google Scholar 

  74. Faust R, Kennedy JP (1987) Living carbocationic polymerization IV. Living polymerization of isobutylene. J Polym Sci Polym Chem Ed 25:1847

    Article  CAS  Google Scholar 

  75. Allen RD, Yilgor I, McGrath JE (1986) Studies on synthetic block ionomers. In: Eisenberg A, Baily FE (eds) Coulombic interactions in macromolecular systems. ACS symposium series, vol 302. American Chemical Society, Washington, pp 79–92

    Google Scholar 

  76. Weiss RA, Sen A, Willis CL, Pottick LA (1991) Block copolymer ionomers: 1. Synthesis and physical properties of sulfonated poly(styrene-ethylene/butylene-styrene). Polymer 32:1867–1874

    Article  CAS  Google Scholar 

  77. WolImann D, Williams CE, Eisenberg A (1990) Small-angle X-ray scattering in “bottlebrush” ionomers. J Polym Sci Polym Phys Ed 28:1979

    Article  Google Scholar 

  78. Storey RF, George SE, Nelson ME (1991) Star-branched block copolymer ionomers: synthesis, characterization, and properties. Macromolecules 24:2920–2930

    Article  CAS  Google Scholar 

  79. Vanhest JCM, Baars MWPL, Elissan-Roman C, Van Genderen MHP, Meijer EW (1995) Acid-functionalized amphiphiles, derived from polystyrene-poly(propylene imine) dendrimers, with a pH-dependent aggregation. Macromolecules 28:6689–6691

    Google Scholar 

  80. Vargantwar PH, Shankar R, Krishnan AS, Ghosh TK, Spontak RJ (2011) Exceptional versatility of solvated block copolymer/ionomer networks as electroactive polymers. Soft Matter 7:1651–1655

    Article  CAS  Google Scholar 

  81. Meng FB, Zhang BY, Liu LM, Zang BL (2003) Liquid-crystalline elastomers produced by chemical crosslinking agents containing sulfonic acid groups. Polymer 44:3935–3943

    Article  CAS  Google Scholar 

  82. Vuillaume PY, Galin JC, Bazuin CG (2001) Ionomer and mesomorphic behavior in a tail-end, ionic mesogen-containing, comblike copolymer series. Macromolecules 34:859–867

    Article  CAS  Google Scholar 

  83. Bualek S, Kapitza R (1988) Orientability of crosslinked and of chiral liquid crystalline polymers. Mol Cryst Liq Cryst 155:47–56

    CAS  Google Scholar 

  84. Meng FB, Zhang BY, Jia YG, Yao DS (2005) Effect of ionic aggregates of sulfonated groups on the liquid crystalline behaviours of liquid crystalline elastomers. Liq Cryst 32:183–189

    Article  CAS  Google Scholar 

  85. Paeglis AU, O'Shea FX (1988) Thermoplastic elastomer compounds from sulfonated EPDM ionomers. Rubber Chem Technol 61:223–237

    Article  CAS  Google Scholar 

  86. Nogueira AF, Alonso-Vante N, De Paoli M-A (1999) Solid-state photoelectrochemical device using poly(o-methoxy aniline) as sensitizer and an ionic conductive elastomer as electrolyte. Synth Met 105:23–27

    Google Scholar 

  87. Telnov AV, Zavyalov NV, AKhokhlov Y, Sitnikov NP, Smetanin ML, Tarantasov VP, Shadrin DN, Shorikov IV, Liakumovich AL, Miryasova FK (2002) Radiation degradation of spent butyl rubbers. Radiat Phys Chem 63:245–248

    Google Scholar 

  88. Hohlbein N, Pelzer T, Nothacker J, von Tapavicza M, Nellesen A, Datta H, Schmidt AM (2013) Self-healing processes in ionomeric elastomers. In: ICSHM 2013: Proceedings of the 4th international conference on self-healing materials, Ghent, Belgium, 16–20 June 2013. Magnel Laboratory for Concrete Research, Ghent, pp 680–683

    Google Scholar 

  89. Chen B, Lu JJ, Yang CH, Yang JH, Zhou J, Chen YM, Suo Z (2014) Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. Appl Mater Interfaces 6:7840–7845

    Article  CAS  Google Scholar 

  90. Yu X, Rajamani R, Stelson K, Cui T (2006) Carbon nanotube-based transparent thin film acoustic actuators and sensors. Sens Actuat A 132:626–631

    Article  CAS  Google Scholar 

  91. Shian S, Diebold RM, Clarke DR (2013) Tunable lenses using transparent dielectric elastomer actuators. Opt Express 21:8669–8676

    Article  CAS  Google Scholar 

  92. Yu L, Madsen FB, Hvilsted S, Skov AL (2015) Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks. RSC Adv 5:49739–49747

    Article  CAS  Google Scholar 

  93. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  94. Malmierca MA, Mora-Barrantes I, Posadas P, González-Jiménez A, Rodríguez A, Ibarra LM, Valentín JL (2013) Development of ionic elastomers with shape memory effect. In: Gil-Negrete N, Alonso A (eds) Constitutive models for rubber VIII. CRC, Boca Raton, pp 689–692

    Google Scholar 

  95. Cai W, Liu L (2008) Shape-memory effect of poly (glycerol-sebacate) elastomer. Mater Lett 62:2171–2173

    Article  Google Scholar 

  96. Zia KM, Zuber M, Barikani M, Bhatti IA, Khan MB (2009) Surface characteristics of chitin-based shape memory polyurethane elastomers. Colloids Surf B Biointerfaces 72:248–252

    Article  CAS  Google Scholar 

  97. Weiss RA, Izzo E, Mandelbaum S (2008) New design of shape memory polymers: mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules 41:2978–2980

    Article  CAS  Google Scholar 

  98. Dong J, Weiss RA (2011) Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 44:8871–8879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdipta Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basu, D., Das, A., Stöckelhuber, K.W., Wießner, S. (2016). Nanostructured Ionomeric Elastomers. In: Stöckelhuber, K., Das, A., Klüppel, M. (eds) Designing of Elastomer Nanocomposites: From Theory to Applications. Advances in Polymer Science, vol 275. Springer, Cham. https://doi.org/10.1007/12_2016_8

Download citation

Publish with us

Policies and ethics