Skip to main content

Microwave-Assisted Polymer Modifications

  • Chapter
  • First Online:
Book cover Microwave-assisted Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 274))

Abstract

Modern microwave synthesizers allow a detailed adjustment and control of temperature and power, such that many polymer modification reactions are performed nowadays using established synthesis protocols. This chapter provides a broad overview of post-polymerization modification reactions where these advantages are exploited for functionalization of synthetic and natural polymers. Selected examples are discussed in detail to demonstrate the versatility of the technique but also to address the challenges of screening approaches often applied to identify the optimum reaction conditions. While microwave synthesizers are regarded as efficient heating devices in the field of synthetic chemistry, selective heating of, for example, conjugated polymers has opened non-standard opportunities for the development of novel nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATRP:

Atom transfer radical polymerization

bipy:

Bipyridine

C-dots:

Carbon dots

CL:

ε-Caprolactone

DMF:

N,N-Dimethylformamide

DMSO:

Dimethylsulfoxide

DP:

Degree of polymerization

dppp:

Diphosphine 1,3-bis(diphenylphosphino)propane

DS:

Degree of substitution

EDTA:

Ethylenediaminetetraacetic acid

FRP:

Free radical polymerization

LPEI:

Linear poly(ethylene imine)

NBS:

N-Bromosuccinimide

NMP:

N-Methyl pyrrolidone

PAA:

Poly(acrylic acid)

PCL:

Poly(ε-caprolactone)

PE:

Polyethylene

PEI:

Poly(ethylene imine)

PEO:

Poly(ethylene oxide)

PEtOx:

Poly(2-ethyl-2-oxazoline)

PMeOx:

Poly(2-methyl-2-oxazoline)

POx:

Poly(2-oxazoline)

PPhOx:

Poly(2-phenyl-2-oxazoline)

PPO:

Poly(propylene oxide)

PS:

Polystyrene

pTosOH:

p-Toluene sulfonic acid

ROP:

Ring-opening polymerization

SEM:

Scanning electron microscopy

TEA:

Triethylamine

TEBA:

Triethyl benzyl ammonium chloride

TEM:

Transmission electron microscopy

wt%:

Weight percent

References

  1. Fang L, Han G, Zhang H (2015) Microwave-assisted free radical polymerizations. Adv Polym Sci. doi:10.1007/12_2013_276

    Google Scholar 

  2. Fimberger M, Wiesbrock F (2015) Microwave-assisted synthesis of polyesters and polyamides by ring-opening polymerization. Adv Polym Sci. doi:10.1007/12_2014_293

    Google Scholar 

  3. Luef KP, Hoogenboom R, Schubert US, Wiesbrock F (2015) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. Adv Polym Sci. doi:10.1007/12_2015_340

    Google Scholar 

  4. Mallakpour S, Zadehnazari A (2013) Microwave-assisted step-growth polymerizations (From polycondensation to C–C coupling). Adv Polym Sci. doi:10.1007/12_2013_275

    Google Scholar 

  5. Reynaud S, Grassl B (2015) Microwave-assisted controlled radical polymerization. Adv Polym Sci. doi:10.1007/12_2014_302

    Google Scholar 

  6. Ibrahim NA, Abou Elmaaty TM, Eid BM, Abd El-Aziz E (2013) Combined antimicrobial finishing and pigment printing of cotton/polyester blends. Carbohydr Polym 95:379–388

    Article  CAS  Google Scholar 

  7. Jacquot C, Jacquot M, Marques P, Jasniewski J, Akhtar MJ, Didelot A-S, Desobry S (2014) Influence of microwave heating time on the structure and properties of chitosan films. J Appl Polym Sci 131:40779

    Article  CAS  Google Scholar 

  8. Felix J, Gatenholm P, Schreiber HP (1994) Plasma modification of cellulose fibers – effects on some polymer composite properties. J Appl Polym Sci 51:285–295

    Article  CAS  Google Scholar 

  9. Dinesh M, Chikkakuntappa R (2013) Microwave irradiation induced modifications on the interfaces in SAN/EVA/PVC and PVAc/BPA/PVP ternary polymer blends: positron lifetime study. Nucl Instrum Meth B 310:67–74

    Article  CAS  Google Scholar 

  10. Manjula MK, Rai KML, Raj JM, Siddaramaiah CSM, Ranganathaiah C (2010) Microwave assisted improvement in physico-mechanical properties of poly(vinyl alcohol)/poly(ethylene imine)/gelatin blends. J Polym Res 17:89–98

    Article  CAS  Google Scholar 

  11. Raj JM, Altaweel AMAM, Chandrashekara MN, Ramya P, Ravikumar HB, Ranganathaiah C (2011) An effective tool to characterize adhesion at the interface of binary polymer blends: a free volume study. J Polym Eng 31:93–96

    Article  CAS  Google Scholar 

  12. Raj JM, Ranganathaiah C (2009) A new method of stabilization and characterization of the interface in binary polymer blends by irradiation: a positron annihilation study. J Polym Sci B Polym Phys 47:619–632

    Article  CAS  Google Scholar 

  13. Raj JM, Ranganathaiah C, Ganesh S (2008) Interfacial modifications in PS/PMMA and PVC/EVA blends by e-beam and microwave irradiation: a free volume study. Polym Eng Sci 48:1495–1503

    Article  CAS  Google Scholar 

  14. Mitra S, Chandra S, Kundu T, Banerjee R, Pramanik P, Goswami A (2012) Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Adv 2:12129–12131

    Article  CAS  Google Scholar 

  15. Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X (2013) Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sens Actuator B Chem 184:156–162

    Article  CAS  Google Scholar 

  16. Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L (2014) One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68:258–264

    Article  CAS  Google Scholar 

  17. Wei W, Xu C, Wu L, Wang J, Ren J, Qu X (2014) Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci Rep 4:3564

    Google Scholar 

  18. Bairi VG, Bourdo SE, Nasini UB, Ramasahayam SK, Watanabe F, Berry BC, Viswanathan T (2013) Microwave-assisted synthesis of nitrogen and phosphorus co-doped mesoporous carbon and their potential application in alkaline fuel cells. Sci Adv Mater 5:1275–1281

    Article  CAS  Google Scholar 

  19. Harris AT, Deshpande S, Kefeng X (2009) Synthesis of graphitic carbon particle chains at low temperatures under microwave irradiation. Mater Lett 63:1390–1392

    Article  CAS  Google Scholar 

  20. Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141

    Article  CAS  Google Scholar 

  21. Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4:707–714

    Article  CAS  Google Scholar 

  22. Zhang X, Manohar SK (2006) Microwave synthesis of nanocarbons from conducting polymers. Chem Commun 2477–2479

    Google Scholar 

  23. Kim S-Y, Kim SY, Lee S, Jo S, Im Y-H, Lee H-S (2015) Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber. Polymer 56:590–595

    Article  CAS  Google Scholar 

  24. Wang C, Ma D, Bao X (2008) Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation. J Phys Chem C 112:17596–17602

    Article  CAS  Google Scholar 

  25. Xu Z, Li H, Li W, Cao G, Zhang Q, Li K, Fu Q, Wang J (2011) Large-scale production of graphene by microwave synthesis and rapid cooling. Chem Commun 47:1166–1168

    Article  CAS  Google Scholar 

  26. Bello-Perez LA, Roger P, Baud B, Colonna P (1998) Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. J Cereal Sci 27:267–278

    Article  CAS  Google Scholar 

  27. Klingler R, Busch KG, Vahedi B (1997) Acid modification of starch in a semi-dry process. Starch 49:391–395

    Article  CAS  Google Scholar 

  28. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    Article  CAS  Google Scholar 

  29. Jaworska MM, Kozlecki T, Gorak A (2012) Review of the application of ionic liquids as solvents for chitin. J Polym Eng 32:67–69

    Article  CAS  Google Scholar 

  30. Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971

    Article  CAS  Google Scholar 

  31. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141

    Article  CAS  Google Scholar 

  32. Illy N, Robitzer M, Auvergne R, Caillol S, David G, Boutevin B (2014) Synthesis of water-soluble allyl-functionalized oligochitosan and its modification by thiol-ene addition in water. J Polym Sci Part A Polym Chem 52:39–48

    Article  CAS  Google Scholar 

  33. Shao J, Yang Y, Zhong Q (2003) Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation. Polym Degrad Stab 82:395–398

    Article  CAS  Google Scholar 

  34. Sun T, Zhou D, Xie J, Mao F (2007) Preparation of chitosan oligomers and their antioxidant activity. Eur Food Res Technol 225:451–456

    Article  CAS  Google Scholar 

  35. Zhou G, Yao W, Wang C (2006) Kinetics of microwave degradation of λ-carrageenan from Chondrus ocellatus. Carbohydr Polym 64:73–77

    Article  CAS  Google Scholar 

  36. Tang F, Chen F, Li F (2013) Preparation and potential in vivo anti-influenza virus activity of low molecular-weight kappa-carrageenans and their derivatives. J Appl Polym Sci 127:2110–2115

    Article  CAS  Google Scholar 

  37. Lukasiewicz M, Kowalski S (2012) Low power microwave-assisted enzymatic esterification of starch. Starch 64:188–197

    Article  CAS  Google Scholar 

  38. Koroskenyi B, McCarthy S (2002) Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers. J Polym Environ 10:93–104

    Article  CAS  Google Scholar 

  39. Shogren RL, Biswas A (2006) Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohyd Polym 64:16–21

    Article  CAS  Google Scholar 

  40. Soetaredjo FE, Ismadji S, Huynh LH, Kasim NS, Tran-Thi NY, Ayucitra A, Ju Y-H (2012) Facile preparation of sago starch esters using full factorial design of experiment. Starch 64:590–597

    Article  CAS  Google Scholar 

  41. Possidonio S, Fidale LC, El Seoud OA (2010) Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci A Polym Chem 48:134–143

    Article  CAS  Google Scholar 

  42. Li J, Zhang L-P, Peng F, Bian J, Yuan T-Q, Xu F, Sun R-C (2009) Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14:3551

    Article  CAS  Google Scholar 

  43. Calce E, Bugatti V, Vittoria V, De Luca S (2012) Solvent-free synthesis of modified pectin compounds promoted by microwave irradiation. Molecules 17:12234–12242

    Article  CAS  Google Scholar 

  44. Čížová A, Sroková I, Sasinková V, Malovíková A, Ebringerová A (2008) Carboxymethyl starch octenylsuccinate: microwave- and ultrasound-assisted synthesis and properties. Starch 60:389–397

    Article  CAS  Google Scholar 

  45. Xu F, Jiang J-X, Sun R-C, She D, Peng B, Sun J-X, Kennedy JF (2008) Rapid esterification of wheat straw hemicelluloses induced by microwave irradiation. Carbohydr Polym 73:612–620

    Article  CAS  Google Scholar 

  46. Ren J-L, Xu F, Sun R-C, Peng B, Sun J-X (2008) Studies of the lauroylation of wheat straw hemicelluloses under heating. J Agric Food Chem 56:1251–1258

    Article  CAS  Google Scholar 

  47. Suchaiya V, Aht-Ong D (2014) Microwave-assisted modification of cellulose as a compatibilizer for PLA and MCC biocomposite film: effects of side chain length and content on mechanical and thermal properties. Polym Polym Compos 22:613–624

    CAS  Google Scholar 

  48. Aime S, Gianolio E, Uggeri F, Tagliapietra S, Barge A, Cravotto G (2006) New paramagnetic supramolecular adducts for MRI applications based on non-covalent interactions between Gd(III)-complexes and beta- or gamma-cyclodextrin units anchored to chitosan. J Inorg Biochem 100:931–938

    Article  CAS  Google Scholar 

  49. Chaudhary JP, Kondaveeti S, Gupta V, Prasad K, Meena R (2014) Preparation and functional evaluation of agarose derivatives. J Appl Polym Sci 131:40630

    Google Scholar 

  50. Peng X-W, Ren J-L, Zhong L-X, Cao X-F, Sun R-C (2011) Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties. J Agric Food Chem 59:570–576

    Article  CAS  Google Scholar 

  51. Kondaveeti S, Mehta GK, Siddhanta AK (2014) Modification of agarose: 6-aminoagarose mediated syntheses of fluorogenic pyridine carboxylic acid amides. Carbohydr Polym 106:365–373

    Article  CAS  Google Scholar 

  52. Sardo C, Farra R, Licciardi M, Dapas B, Scialabba C, Giammona G, Grassi M, Grassi G, Cavallaro G (2015) Development of a simple, biocompatible and cost-effective inulin-diethylenetriamine based siRNA delivery system. Eur J Pharm Sci 75:60–71

    Article  CAS  Google Scholar 

  53. Liu L, Li Y, Li Y, Fang Y-E (2004) Rapid N-phthaloylation of chitosan by microwave irradiation. Carbohydr Polym 57:97–100

    Article  CAS  Google Scholar 

  54. Petit C, Reynaud S, Desbrieres J (2015) Amphiphilic derivatives of chitosan using microwave irradiation. Toward an eco-friendly process to chitosan derivatives. Carbohydr Polym 116:26–33

    Article  CAS  Google Scholar 

  55. Radwan AA, Alanazi FK, Alsarra IA (2010) Microwave irradiation-assisted synthesis of a novel crown ether crosslinked chitosan as a chelating agent for heavy metal ions (M + n). Molecules 15:6257

    Article  CAS  Google Scholar 

  56. Ge H, Huang S (2010) Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. J Appl Polym Sci 115:514–519

    Article  CAS  Google Scholar 

  57. Cao Z, Ge H, Lai S (2001) Studies on synthesis and adsorption properties of chitosan cross-linked by glutaraldehyde and Cu(II) as template under microwave irradiation. Eur Polym J 37:2141–2143

    Article  CAS  Google Scholar 

  58. Mondal K, Mehta P, Gupta MN (2004) Affinity precipitation of Aspergillus niger pectinase by microwave-treated alginate. Protein Expr Purif 33:104–109

    Article  CAS  Google Scholar 

  59. Diaz-Visurraga J, Daza C, Pozo C, Becerra A, von Plessing C, Garcia A (2012) Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Int J Nanomedicine 7:3597–3612

    Article  CAS  Google Scholar 

  60. Chhatbar MU, Meena R, Prasad K, Chejara DR, Siddhanta AK (2011) Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives. Carbohydr Res 346:527–533

    Article  CAS  Google Scholar 

  61. Sanandiya ND, Siddhanta AK (2013) Facile synthesis of a new fluorogenic metal scavenging interpolymeric diamide based on cellulose and alginic acids. Carbohydr Res 381:93–100

    Article  CAS  Google Scholar 

  62. Grabowska B, Sitarz M, Olejnik E, Kaczmarska K (2015) FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – part I. Spectrochim Acta A 135:529–535

    Article  CAS  Google Scholar 

  63. Tomanová V, Pielichowski K, Sroková I, Žoldaková A, Sasinková V, Ebringerová A (2008) Microwave-assisted synthesis of carboxymethylcellulose – based polymeric surfactants. Polym Bull 60:15–25

    Article  CAS  Google Scholar 

  64. Singh V, Kumar P, Sanghi R (2012) Use of microwave irradiation in the grafting modification of the polysaccharides - a review. Prog Polym Sci 37:340–364

    Article  CAS  Google Scholar 

  65. Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  CAS  Google Scholar 

  66. Feng L, Zhou Z, Dufresne A, Huang J, Wei M, An L (2009) Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J Appl Polym Sci 112:2830–2837

    Article  CAS  Google Scholar 

  67. Liu L, Li Y, Fang Y, Chen LX (2005) Microwave-assisted graft copolymerization of epsilon-caprolactone onto chitosan via the phthaloyl protection method. Carbohydr Polym 60:351–356

    Article  CAS  Google Scholar 

  68. Das R, Das D, Ghosh P, Ghosh A, Dhara S, Panda AB, Pal S (2015) Novel pH-responsive graft copolymer based on HPMC and poly(acrylamide) synthesised by microwave irradiation: application in controlled release of ornidazole. Cellulose 22:313–327

    Article  CAS  Google Scholar 

  69. Meenkashi, Ahuja M, Verma P (2014) MW-assisted synthesis of carboxymethyl tamarind kernel polysaccharide-g-polyacrylonitrile: optimization and characterization. Carbohyd Polym 113:532–538

    Google Scholar 

  70. Yiğitoğlu M, Aydın G, Işıklan N (2014) Microwave-assisted synthesis of alginate-g-polyvinylpyrrolidone copolymer and its application in controlled drug release. Polym Bull 71:385–414

    Article  CAS  Google Scholar 

  71. Kalia S, Sheoran R (2011) Modification of ramine fibers using microwave-assisted and cellulase enzyme-assisted biopolishing: a comparative study of morphology, thermal stability, and crystallinity. Int J Polym Anal Ch 16:307–318

    Article  CAS  Google Scholar 

  72. Kalia S, Vashistha S (2012) Surface modification of sisal fibers (Agave sisalana) using bacterial cellulase and methyl methacrylate. J Polym Environ 20:142–151

    Article  CAS  Google Scholar 

  73. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  Google Scholar 

  74. Sorour MH, El Sayed MM, Abd El Moneem NM, Talaat HA, Shaalan HF, El Marsafy SM (2013) Process and financial considerations pertinent to hydrogel manufacture. Starch 65:527–534

    Article  CAS  Google Scholar 

  75. Sorour M, El-Sayed M, Abd El Moneem N, Talaat HA, Shalaan H, El Marsafy S (2013) Characterization of hydrogel synthesized from natural polysaccharides blend grafted acrylamide using microwave (MW) and ultraviolet (UV) techniques. Starch 65:172–178

    Article  CAS  Google Scholar 

  76. Wei X, Chang G, Li J, Wang F, Cui L, Fu T, Kong L (2014) Preparation of pH- and salinity-responsive cellulose copolymer in ionic liquid. J Polym Res 21:535

    Article  CAS  Google Scholar 

  77. Likhitha M, Sailaja RRN, Priyambika VS, Ravibabu MV (2014) Microwave assisted synthesis of guar gum grafted sodium acrylate/cloisite superabsorbent nanocomposites: reaction parameters and swelling characteristics. Int J Biol Macromol 65:500–508

    Article  CAS  Google Scholar 

  78. Mallakpour SE, Hajipour AR, Mahdavian AR, Zadhoush A, Ali-Hosseini F (2001) Microwave assisted oxidation of polyethylene under solid-state conditions with potassium permanganate. Eur Polym J 37:1199–1206

    Article  CAS  Google Scholar 

  79. Sulkowski WW, Wolinska A, Sulkowska A, Nowak K, Bogdal D (2008) Sulphonation of expanded polystyrene waste under microwave irradiation. E Polymers 7:65–71

    Google Scholar 

  80. Monteil C, Bar N, Moreau B, Retoux R, Bee A, Talbot D, Villemin D (2014) Phosphonated polyethylenimine-coated nanoparticles: size- and zeta-potential-adjustable nanomaterials. Part Part Syst Charact 31:219–227

    Article  CAS  Google Scholar 

  81. Arslan M, Gok O, Sanyal R, Sanyal A (2014) Clickable poly(ethylene glycol)-based copolymers using azide-alkyne click cycloaddition-mediated step-growth polymerization. Macromol Chem Phys 215:2237–2247

    Article  CAS  Google Scholar 

  82. Huy HT, Buu TN, Dung TTK, Han TN, VanQuang P (1996) Fixation of alpha-naphthyl acetic acid onto epoxidized liquid natural rubber in microwave reactor (monomode system). J Macromol Sci Pure Appl Chem 1957–1962

    Google Scholar 

  83. Hurduc N, Buisine JM, Decock P, Talewee J, Surpateanu G (1996) Influence of microwaves irradiation on modification of oxetane based polymers with 4-(2-amino-ethyl)morpholine. Polym J 28:550–552

    Article  CAS  Google Scholar 

  84. Baudel V, Cazier F, Woisel P, Surpateanu G (2002) Synthesis and modification of oxetane based oligomers with 3-ethoxypropylamine by focused microwave irradiation. Eur Polym J 38:615–618

    Article  CAS  Google Scholar 

  85. Kretschmann O, Schmitz S, Ritter H (2007) Microwave-assisted synthesis of associative hydrogels. Macromol Rapid Commun 28:1265–1269

    Article  CAS  Google Scholar 

  86. Bezdushna E, Ritter H (2007) Microwave-assisted esterification of methacrylic acid and polymer-analogous esterification of poly[ethylene-co-(acrylic acid)] with dissimilar phenols. Macromol Rapid Commun 28:443–448

    Article  CAS  Google Scholar 

  87. Sinnwell S, Ritter H (2007) Microwave assisted hydroxyalkylamidation of poly(ethylene-co-acrylic acid) and formation of grafted poly(ϵ-caprolactone) side chains. J Polym Sci A Polym Chem 45:3659–3667

    Article  CAS  Google Scholar 

  88. Bezdushna E, Ritter H (2008) Microwave promoted polymer analogous amidation and esterification of poly(ether sulfone) bearing free carboxylic groups. Macromol Chem Phys 209:1942–1947

    Article  CAS  Google Scholar 

  89. Dickmeis M, Ritter H (2009) Microwave-assisted modification of poly(vinylimidazolium salts) via N, N-dimethylformamide decomposition. Macromol Chem Phys 210:776–782

    Article  CAS  Google Scholar 

  90. Lamanna M, D'Accorso N (2011) New copolymers with heterocyclic pendant groups obtained from PVC using microwave-assisted process. J Appl Polym Sci 121:951–956

    Article  CAS  Google Scholar 

  91. Chen ZX, Xu GY, Yang GC, Wang W (2004) Preparation of non-cross-linked polystyrene-supported quaternary ammonium salts and use as phase transfer catalysts under microwave. React Funct Polym 61:139–146

    Article  CAS  Google Scholar 

  92. Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33:332–336

    Article  CAS  Google Scholar 

  93. Englert C, Tauhardt L, Hartlieb M, Kempe K, Gottschaldt M, Schubert US (2014) Linear poly(ethylene imine)-based hydrogels for effective binding and release of DNA. Biomacromolecules 15:1124–1131

    Article  CAS  Google Scholar 

  94. Rinkenauer AC, Vollrath A, Schallon A, Tauhardt L, Kempe K, Schubert S, Fischer D, Schubert US (2013) Parallel high-throughput screening of polymer vectors for nonviral gene delivery: evaluation of structure–property relationships of transfection. ACS Comb Sci 15:475–482

    Article  CAS  Google Scholar 

  95. Lambermont-Thijs HM, van der Woerdt FS, Baumgaertel A, Bonami L, Du Prez FE, Schubert US, Hoogenboom R (2009) Linear poly (ethylene imine)s by acidic hydrolysis of poly(2-oxazoline)s: kinetic screening, thermal properties, and temperature-induced solubility transitions. Macromolecules 43:927–933

    Article  CAS  Google Scholar 

  96. Tauhardt L, Kempe K, Knop K, Altuntas E, Jaeger M, Schubert S, Fischer D, Schubert US (2011) Linear polyethyleneimine: optimized synthesis and characterization - on the way to “pharmagrade” batches. Macromol Chem Phys 212:1918–1924

    CAS  Google Scholar 

  97. de la Rosa VR, Bauwens E, Monnery BD, De Geest BG, Hoogenboom R (2014) Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polym Chem 5:4957–4964

    Article  Google Scholar 

  98. Lambermont-Thijs HML, Heuts JPA, Hoeppener S, Hoogenboom R, Schubert US (2011) Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles. Polym Chem 2:313–322

    Article  CAS  Google Scholar 

  99. van Kuringen HPC, de la Rosa VR, Fijten MWM, Heuts JPA, Hoogenboom R (2012) Enhanced selectivity for the hydrolysis of block copoly(2-oxazoline)s in ethanol–water resulting in linear poly(ethylene imine) copolymers. Macromol Rapid Commun 33:827–832

    Article  CAS  Google Scholar 

  100. Kelly AM, Kaltenhauser V, Mühlbacher I, Rametsteiner K, Kren H, Slugovc C, Stelzer F, Wiesbrock F (2013) Poly(2-oxazoline)-derived contact biocides: contributions to the understanding of antimicrobial activity. Macromol Biosci 13:116–125

    Article  CAS  Google Scholar 

  101. Tauhardt L, Frant M, Pretzel D, Hartlieb M, Bucher C, Hildebrand G, Schroter B, Weber C, Kempe K, Gottschaldt M, Liefeith K, Schubert US (2014) Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications. J Mater Chem B 2:4883–4893

    Article  CAS  Google Scholar 

  102. Weber C, Czaplewska JA, Baumgaertel A, Altuntas E, Gottschaldt M, Hoogenboom R, Schubert US (2012) A sugar decorated macromolecular bottle brush by carbohydrate-initiated cationic ring-opening polymerization. Macromolecules 45:46–55

    Article  CAS  Google Scholar 

  103. Chen C-H, Tung C-L, Sun C-M (2012) Microwave-assisted synthesis of highly functionalized guanidines on soluble polymer support. Tetrahedron Lett 53:3959–3962

    Article  CAS  Google Scholar 

  104. Van Hove AH, Wilson BD, Benoit DSW (2013) Microwave-assisted functionalization of poly(ethylene glycol) and on-resin peptides for use in chain polymerizations and hydrogel formation. J Vis Exp 80, e50890

    Google Scholar 

  105. Glisoni RJ, Sosnik A (2014) Novel poly(ethylene oxide)-b-poly(propylene oxide) copolymer-glucose conjugate by the microwave-assisted ring opening of a sugar lactone. Macromol Biosci 14:1639–1651

    Article  CAS  Google Scholar 

  106. Wu H, Li F, Lin Y, Yang M, Chen W, Cai R (2006) Synthesis of telechelic C60 end-capped polymers under microwave irradiation. J Appl Polym Sci 99:828–834

    Article  CAS  Google Scholar 

  107. Ouhib F, Desbief S, Lazzaroni R, De Winter J, Gerbaux P, Jerome C, Detrembleur C (2012) Thermally induced coupling of poly(thiophene)-based block copolymers prepared by Grignard metathesis polymerization: a straightforward route toward highly regioregular multiblock conjugated copolymers. Macromolecules 45:6796–6806

    Article  CAS  Google Scholar 

  108. Hoogenboom R, Moore BC, Schubert US (2006) Synthesis of star-shaped poly(ε-caprolactone) via “click” chemistry and “supramolecular click” chemistry. Chem Commun 4010–4012

    Google Scholar 

  109. Haensch C, Erdmenger T, Fijten MWM, Hoeppener S, Schubert US (2009) Fast surface modification by microwave assisted click reactions on silicon substrates. Langmuir 25:8019–8024

    Article  CAS  Google Scholar 

  110. Gloecklhofer F, Lumpi D, Kohlstaedt M, Yurchenko O, Wuerfel U, Froehlich J (2015) Towards continuous junction (CJ) organic electronic devices: fast and clean post-polymerization modification by oxidation using dimethyldioxirane (DMDO). React Funct Polym 86:16–26

    Article  CAS  Google Scholar 

  111. Gloecklhofer F, Lumpi D, Stoeger B, Froehlich J (2014) Multigram synthesis of bis (trimethylsilyl)ethynyl benzenes suitable for post-polymerization modification. New J Chem 38:2229–2232

    Article  CAS  Google Scholar 

  112. Malkoch M, Schleicher K, Drockenmuller E, Hawker CJ, Russell TP, Wu P, Fokin VV (2005) Structurally diverse dendritic libraries: a highly efficient functionalization approach using click chemistry. Macromolecules 38:3663–3678

    Article  CAS  Google Scholar 

  113. Rijkers DTS, van Esse GW, Merkx R, Brouwer AJ, Jacobs HJF, Pieters RJ, Liskamp RMJ (2005) Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry. Chem Commun 4581–4583

    Google Scholar 

  114. Trellenkamp T, Ritter H (2010) Poly(N-vinylpyrrolidone) bearing covalently attached cyclodextrin via click-chemistry: synthesis, characterization, and complexation behavior with phenolphthalein. Macromolecules 43:5538–5543

    Article  CAS  Google Scholar 

  115. Liu X, Zheng H-N, Ma Y-Z, Yan Q, Xiao S-J (2011) Microwave irradiated click reactions on silicon surfaces via derivertization of covalently grafted poly(PEGMA) brushes. J Colloid Interface Sci 358:116–122

    Article  CAS  Google Scholar 

  116. Yaylayan VA, Siu M, Belanger JMR, Pare JRJ (2002) Microwave-assisted PEGylation of Merrifield resins. Tetrahedron Lett 43:9023–9025

    Article  CAS  Google Scholar 

  117. Pilsniak M, Trochimczuk AW (2007) Synthesis and characterization of polymeric resins with aliphatic and aromatic amino ligands and their sorption behavior towards gold from ammonium hydroxide solutions. React Funct Polym 67:1570–1576

    Article  CAS  Google Scholar 

  118. Wolska J, Bryjak M (2011) Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination 283:193–197

    Article  CAS  Google Scholar 

  119. Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S-I (2005) Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7:877–880

    Article  CAS  Google Scholar 

  120. Izumi R, Matsushita T, Fujitani N, Naruchi K, Shimizu H, Tsuda S, Hinou H, Nishimura S-I (2013) Microwave-assisted solid-phase synthesis of antifreeze glycopeptides. Chem Eur J 19:3913–3920

    Article  CAS  Google Scholar 

  121. Matsushita T, Hinou H, Fumoto M, Kurogochi M, Fujitani N, Shimizu H, Nishimura S-I (2006) Construction of highly glycosylated mucin-type glycopeptides based on microwave-assisted solid-phase syntheses and enzymatic modifications. J Org Chem 71:3051–3063

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Carl-Zeiss-Foundation and the Thuringian Ministry of Economic Affairs, Science and Digital Society (TMWWdG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine Weber or Ulrich S. Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Englert, C., Schwenke, A.M., Hoeppener, S., Weber, C., Schubert, U.S. (2016). Microwave-Assisted Polymer Modifications. In: Hoogenboom, R., Schubert, U., Wiesbrock, F. (eds) Microwave-assisted Polymer Synthesis. Advances in Polymer Science, vol 274. Springer, Cham. https://doi.org/10.1007/12_2015_347

Download citation

Publish with us

Policies and ethics