Skip to main content

Liquid Crystal Elastomers and Light

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 250))

Abstract

Liquid crystal elastomers (LCEs) are solid liquid crystals; they combine elasticity with orientational order. Mechanical strain therefore changes liquid crystalline order and the optical properties of these materials. Conversely, light can change the orientational order, and give rise to mechanical forces and changes in shape. Light–matter interactions in LCEs therefore involve a broad range of unusual phenomena, which raise a number of intriguing questions. There is great potential for device applications, but considerable challenges must first be overcome. The most appealing aspect of light–matter interactions in LCEs, however, is the promise of new physics waiting to be discovered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5CB:

4-Cyano-4′-pentylbipheny

CW:

Continuous wave

DCM:

4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran

DOS:

Density of states

LC:

Liquid crystal

LCE:

Liquid crystal elastomer

UV:

Ultraviolet

References

  1. de Gennes PG (1975) Réflexions sur un type de polymères nématiques. C R Acad Sci Ser B 281:101–103

    Google Scholar 

  2. Finkelmann H, Kock H, Rehage G (1981) Investigations on LC polysiloxanes: 3. Liquid crystalline elastomers - a new type of liquid crystalline material. Makromol Chem Rapid Commun 2:317–322

    Article  CAS  Google Scholar 

  3. Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev 127:965

    Article  Google Scholar 

  4. Frank FC (1958) I. Liquid crystals. On the theory of liquid crystals. Discuss Faraday Soc 25:19–28

    Article  Google Scholar 

  5. Landau LD, Lifshitz EM (1986) Theory of elasticity. Elsevier, Oxford

    Google Scholar 

  6. Schmidtke J, Kniesel S, Finkelmann H (2005) Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules 38:1357–1363

    Article  CAS  Google Scholar 

  7. Lazo I, Palffy-Muhoray P (2008) Determination of the refractive indices of liquid crystal elastomers. In: APS March Meeting. New Orleans, LA: Bull Am Phys Soc

    Google Scholar 

  8. Yusuf Y, Minami N, Yamaguchi S, Cho DU, Cladis PE, Brand HR, Finkelmann H, Kai S (2007) Shape anisotropy and optical birefringence measurements of dry and swollen liquid single crystal elastomers. J Phys Soc Jpn 76:073602

    Article  Google Scholar 

  9. Finkelmann H, Greve A, Warner M (2001) The elastic anisotropy of nematic elastomers. Eur Phys J E 5:281–293

    Article  CAS  Google Scholar 

  10. Urayama K, Arai Y, Takigawa T (2006) Swelling and shrinking dynamics of nematic elastomers having global director orientation. Macromolecules 38:3469

    Article  Google Scholar 

  11. Chambers M, Verduzco R, Gleeson JT, Sprunt S, Jákli A (2009) Calamitic liquid-crystalline elastomers swollen in bent-core liquid-crystal solvents. Adv Mater 21:1622–1626

    Article  CAS  Google Scholar 

  12. Yusuf Y, Huh JH, Cladis PE, Brand HR, Finkelmann H, Kai S (2005) Low-voltage-driven electromechanical effects of swollen liquid-crystal elastomers. Phys Rev E 71:061702

    Article  Google Scholar 

  13. Kupfer J, Finkelmann H (1991) Nematic liquid single-crystal elastomers. Makromol Chem Rapid Commun 12:717–726

    Article  Google Scholar 

  14. Verduzco R, Meng GN, Kornfield JA, Meyer RB (2006) Buckling instability in liquid crystalline physical gels. Phys Rev Lett 96:147802

    Article  Google Scholar 

  15. Clarke SM, Nishikawa E, Finkelmann H, Terentjev EM (1997) Light-scattering study of random disorder in liquid crystalline elastomers. Macromol Chem Phys 198:3485–3498

    Article  CAS  Google Scholar 

  16. Clarke SM, Terentjev EM, Kundler I, Finkelmann H (1998) Texture evolution during the polydomain-monodomain transition in nematic elastomers. Macromolecules 31:4862–4872

    Article  CAS  Google Scholar 

  17. Kempe MD, Scruggs NR, Verduzco R, Lal J, Kornfield JA (2004) Self-assembled liquid-crystalline gels designed from the bottom up. Nat Mater 3:177–182

    Article  CAS  Google Scholar 

  18. Palffy-Muhoray P, Meyer RB (2004) Bridging the experiment-theory gap. Nat Mater 3:139–140

    Article  CAS  Google Scholar 

  19. Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CWM, Lub J, Broer DJ (2005) Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem 15:5043–5048

    Article  CAS  Google Scholar 

  20. Zhao Y, Ikeda T (2009) Smart light-responsive materials: azobenzene-containing polymers and liquid crystals. Wiley, Hoboken

    Google Scholar 

  21. van Oosten CL, Corbett D, Davies D, Warner M, Bastiaansen CWM, Broer DJ (2008) Bending dynamics and directionality reversal in liquid crystal network photoactuators. Macromolecules 41:8592–8596

    Article  Google Scholar 

  22. Orear J, Fermi E (1950) Nuclear physics, a course given by Enrico Fermi at the University of Chicago, Revised edition. University of Chicago Press, Chicago

    Google Scholar 

  23. Belyakov VA (1992) Diffraction optics of complex-structured periodic media. Springer, Berlin, 380 p

    Book  Google Scholar 

  24. de Vries H (1951) Rotatory power and other optical properties of certain liquids crystals. Acta Cryst 4:219

    Article  Google Scholar 

  25. Kogelnik H, Shank CV (1971) Stimulated emission in a periodic structure. Appl Phys Lett 18:152–154

    Article  CAS  Google Scholar 

  26. Goldberg LS, Schnur JM (1973) Tunable internal feedback liquid crystal laser. US Patent 3,771,065

    Google Scholar 

  27. Ilchishin IP, Tikhonov EA, Tischenko VG, Shpak MT (1981) Generation of tunable radiation by impurity cholesteric liquid crystals. JETP Lett (Translation of Pis ma v Zhurnal Eksperimental noi i Teoreticheskoi Fiziki) 32:27–30

    Google Scholar 

  28. Kopp VI, Fan B, Vithana HKM, Genack AZ (1998) Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt Lett 23:1707–1709

    Article  CAS  Google Scholar 

  29. Taheri B, Palffy-Muhoray P, Kabir H (1999) Lasing in cholesteric band-gap materials. In: ALCOM symposium. Chiral materials and applications. 18–19 Feb 1999, Cuyahoga Falls, OH

    Google Scholar 

  30. Palffy-Muhoray P, Munoz A, Taheri B, Twieg R (2000) Lasing in cholesteric liquid crystals. Journal of the Society for Information Display Symposium Digest of Technical Papers, 31, pp 1170–1173

    Google Scholar 

  31. Schmidtke J, Stille W (2003) Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment. Eur Phys J B Condensed Matter 31:179–194

    Article  CAS  Google Scholar 

  32. Cao W (2005) Fluorescence and lasing in liquid crystalline photonic band gap materials. In: Chemical Physics Interdisciplinary Program, Kent State University

    Google Scholar 

  33. Alvarez E, He M, Munoz AF, Palffy-Muhoray P, Serak SV, Taheri B, Twieg R (2001) Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with laser dyes. Mol Cryst Liq Cryst 57:369

    Google Scholar 

  34. Serak SV, Arikainen EO, Gleeson HF, Grozhik VA, Guillou J-P, Usova NA (2002) Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant. Liq Cryst Today 29:19–26

    CAS  Google Scholar 

  35. Munoz A, Palffy-Muhoray P, Taheri B (2001) Ultraviolet lasing in cholesteric liquid crystals. Opt Lett 26:804–806

    Article  CAS  Google Scholar 

  36. Schmidtke J, Stille W, Finkelmann H, Kim S-T (2002) Laser emission in a dye doped cholesteric polymer network. Adv Mater 14:746

    Article  CAS  Google Scholar 

  37. Shibaev PV, Tang K, Genack AZ, Kopp V, Green MM (2002) Lasing from a stiff chain polymeric lyotropic cholesteric liquid crystal. Macromolecules 35:3022–3025

    Article  CAS  Google Scholar 

  38. Ozaki M, Kasano M, Ganzke D, Haase W, Yoshino K (2002) Mirrorless lasing in a dye-doped ferroelectric liquid crystal. Adv Mater 14:306–309

    Article  CAS  Google Scholar 

  39. Ozaki M, Kasano M, Kitasho T, Ganzke D, Haase W, Yoshino K (2003) Electro-tunable liquid-crystal laser. Adv Mater 15:974–977

    Article  CAS  Google Scholar 

  40. Kasano M, Ozaki M, Yoshino K, Ganzke D, Haase W (2003) Electrically tunable waveguide laser based on ferroelectric liquid crystal. Appl Phys Lett 82:4026–4028

    Article  CAS  Google Scholar 

  41. Strangi G, Barna V, Caputo R, Luca AD, Versace C, Scaramuzza N, Umeton C, Bartolino R, Price GN (2005) Color-tunable organic microcavity laser array using distributed feedback. Phys Rev Lett 94:063903–1–063903–4

    Article  Google Scholar 

  42. Chanishvili A, Chilaya G, Petriashvili G, Barberi R, Bartolino R, Cipparrone G, Mazzulla A (2004) Lasing lasing in dye-doped cholesteric liquid crystals: two new tuning strategies. Adv Mater 16:791–795

    Article  CAS  Google Scholar 

  43. Funamoto K, Ozaki M, Yoshino K (2003) Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal. Jpn J Appl Phys 42:L1523–L1525

    Article  CAS  Google Scholar 

  44. Moreira MF, Carvalho ICS, Cao W, Bailey C, Taheri B, Palffy-Muhoray P (2004) Cholesteric liquid-crystal laser as an optic-fiber based temperature sensor. Appl Phys Lett 85:2691–2693

    Article  CAS  Google Scholar 

  45. Chanishvili A, Chilaya G, Petriashvili G, Barberi R, Bartolino R, Cipparrone G, Mazzulla A, Oriol L (2003) Phototunable lasing in dye-doped cholesteric liquid crystals. Appl Phys Lett 83:5353–5355

    Article  CAS  Google Scholar 

  46. Bobrovsky AY, Boiko NI, Shibaev VP, Wendorff JH (2003) Cholesteric mixtures with photochemically tunable, circularly polarized fluorescence. Adv Mater 15:282–287

    Article  CAS  Google Scholar 

  47. Shibaev PV, Sanford RL, Chiappetta D, Milner V, Genack A, Bobrovsky A (2005) Light controllable tuning and switching of lasing in chiral liquid crystals. Opt Express 13:2358–2363

    Article  CAS  Google Scholar 

  48. Ilchishin IP, Yaroshchuk OV, Gryshchenko SV, Shaydiuk EA (2004) Influence of the light-induced molecular transformations on the helix pitch and lasing spectra of cholesteric liquid crystals. Proc SPIE 5507:229–234

    Article  CAS  Google Scholar 

  49. Shibaev PV, Madsen J, Genack AZ (2004) Lasing and narrowing of spontaneous emission from responsive cholesteric films. Chem Mater 16:1397–1399

    Article  CAS  Google Scholar 

  50. He GS, Lin T-C, Hsiao VKS, Cartwright AN, Prasad PN, Natarajan LV, Tondiglia VP, Jakubiak R, Vaia RA, Bunning TJ (2003) Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element. Appl Phys Lett 83:2733–2735

    Article  CAS  Google Scholar 

  51. Shirota K, Sun H-B, Kawata S (2004) Two-photon lasing of dye-doped photonic crystal lasers. Appl Phys Lett 84:1632–1634

    Article  CAS  Google Scholar 

  52. Ozaki M, Ozaki R, Matsui T, Yoshino K (2003) Twist-defect-mode lasing in photopolymerized cholesteric liquid crystal. Jpn J Appl Phys 42:L472–L475

    Article  CAS  Google Scholar 

  53. Schmidtke J, Stille W (2003) Photonic defect modes in cholesteric liquid crystal films. Eur Phys J E Soft Matter 12:553–564

    Article  CAS  Google Scholar 

  54. Song MH, Park B, Shin K-C, Ohta T, Tsunoda Y, Hoshi H, Takanishi Y, Ishikawa K, Watanabe J, Nishimura S, Toyooka T, Zhu Z, Swager TM, Takezoe H (2004) Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals. Adv Mater 16:779–783

    Article  CAS  Google Scholar 

  55. Cao W, Palffy-Muhoray P, Taheri B, Marino A, Abbate G (2005) Lasing thresholds of cholesteric liquid crystals lasers. Mol Cryst Liq Cryst 429:101–110

    Article  CAS  Google Scholar 

  56. Blinov LM, Bartolino R (2010) Liquid crystal microlasers. Transworld Research Network, Kerala

    Google Scholar 

  57. Kim ST, Finkelmann H (2001) Cholesteric liquid single-crystal elastomers (LSCE) obtained by the anisotropic deswelling method. Macromol Rapid Commun 22:429–433

    Article  CAS  Google Scholar 

  58. Warner M, Terentjev EM, Meyer RB, Mao Y (2000) Untwisting of a cholesteric elastomer by a mechanical field. Phys Rev Lett 85:2320–2323

    Article  CAS  Google Scholar 

  59. Finkelmann H, Kim ST, Muñoz A, Palffy-Muhoray P, Taheri B (2001) Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater 13:1069–1072

    Article  CAS  Google Scholar 

  60. Graham-Rowe D (2009) A new twist to tuning lasers. Nat Photonics 3:182–183

    Google Scholar 

  61. Schmidtke J, Stille W, Finkelmann H (2003) Defect mode emission of a dye doped cholesteric polymer network. Phys Rev Lett 90:083902

    Article  Google Scholar 

  62. Kornfield J, Clark NA, Dalton L, Marder S, Ober C, Palffy-Muhoray P, Perry JW, Thomas N, Walba DM, Wu ST (2002) New liquid crystal materials enabling revolutionary display devices. P Soc Photo-Opt Ins 4712:336–349

    Google Scholar 

  63. Amigo-Melchior A, Finkelmann H (2002) A concept for bifocal contact- or intraocular lenses: liquid single crystal hydrogels. Polym Adv Technol 13:363–369

    Article  CAS  Google Scholar 

  64. Eu BC (1986) Statistical foundation of the Minkowski tensor for ponderable media. Phys Rev A 33:4121–4131

    Article  CAS  Google Scholar 

  65. Jánossy I (1991) Optical effects in liquid crystals, 1st edn. Perspectives in condensed matter physics. Kluwer Academic, Dordrecht, 232 p

    Google Scholar 

  66. Finkelmann H, Nishikawa E, Pereira GG, Warner M (2001) A new opto-mechanical effect in solids. Phys Rev Lett 87:015501

    Article  CAS  Google Scholar 

  67. Dawson NJ, Kuzyk MG, Neal J, Luchette P, Palffy-Muhoray P (2011) Cascading of liquid crystal elastomer photomechanical optical devices. Opt Commun 284:991–993

    Article  CAS  Google Scholar 

  68. Janossy I, Lloyd AD, Wherrett BS (1990) Anomalous optical Freedericksz transition in an absorbing liquid-crystal. Mol Cryst Liq Cryst 179:1–12

    CAS  Google Scholar 

  69. Kreuzer M, Marrucci L, Paparo D (2000) Light-induced modification of kinetic molecular properties: enhancement of optical Kerr effect in absorbing liquids, photoinduced torque and molecular motors in dye-doped nematics. J Nonlinear Opt Phys 9:157–182

    CAS  Google Scholar 

  70. Kosa T, Weinan E, Palffy-Muhoray P (2000) Brownian motors in the photoalignment of liquid crystals. Int J Eng Sci 38:1077–1084

    Article  CAS  Google Scholar 

  71. Palffy-Muhoray P, Kosa T, Weinan E (2002) Brownian motors in the photoalignment of liquid crystals. Appl Phys A Mater Sci Process 75:293–300

    Article  CAS  Google Scholar 

  72. Yu YL, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light – miniaturizing a simple photomechanical system could expand its range of applications. Nature 425:145

    Article  CAS  Google Scholar 

  73. Corbett D, van Oosten CL, Warner M (2008) Nonlinear dynamics of optical absorption of intense beams. Phys Rev A 78:013823

    Article  Google Scholar 

  74. Corbett D, Warner M (2007) Linear and nonlinear photoinduced deformations of cantilevers. Phys Rev Lett 99:174302

    Article  CAS  Google Scholar 

  75. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M (2004) Fast liquid-crystal elastomer swims into the dark. Nat Mater 3:307–310

    Article  CAS  Google Scholar 

  76. Serak S, Tabiryan N, Vergara R, White TJ, Vaia RA, Bunning TJ (2010) Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6:779

    Article  CAS  Google Scholar 

  77. Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE (2002) Single-molecule optomechanical cycle. Science 296:1103–1106

    Article  Google Scholar 

  78. Harris KD, Cuypers R, Scheibe P, Mol GN, Lub J, Bastiaansen CWM, Broer DJ (2005) Molecular orientation control for thermal and UV-driven polymer MEMS actuators. Smart Sensors, Actuators, and MEMS II 5836:493–503

    CAS  Google Scholar 

  79. Mol T, Harris KD, Bastiaansen C, Broer DJ (2005) Stimulated mechanical responses of liquid crystal networks with a splayed molecular organization. Emerging Liquid Crystal Technologies 5741:47–55

    CAS  Google Scholar 

  80. van Oosten CL, Bastiaansen CWM, Broer DJ (2009) Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater 8:677–682

    Article  Google Scholar 

  81. Palffy-Muhoray P (2009) Printed actuators in a flap. Nat Mater 8:614–615

    Article  CAS  Google Scholar 

  82. Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya J, Kinoshita M, Shishido A, Yu YL, Barrett CJ, Ikeda T (2009) Photomobile polymer materials-various three-dimensional movements. J Mater Chem 19:60–62

    Article  CAS  Google Scholar 

  83. Yoshino T, Mamiya J, Kinoshita M, Ikeda T, Yu YL (2007) Preparation and characterization of crosslinked azobenzene liquid-crystalline polymer fibers. Mol Cryst Liq Cryst 478:989–999

    Article  CAS  Google Scholar 

  84. Yamada M, Kondo M, Mamiya JI, Yu YL, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  CAS  Google Scholar 

  85. Hiscock T, Warner M, Palffy-Muhoray P (2011) Solar to electrical conversion via liquid crystal elastomers. J Appl Phys 109:104506

    Article  Google Scholar 

  86. Warner M, Blaikie RJ (2009) Two-color nonlinear absorption of light in dye layers. Phys Rev A 80:033833

    Article  Google Scholar 

  87. Warner M, Mahadevan L (2004) Photoinduced deformations of beams, plates, and films. Phys Rev Lett 92:134302

    Article  CAS  Google Scholar 

  88. Zhu W, Shelley M, Palffy-Muhoray P (2011) Modeling and simulation of liquid-crystal elastomers. Phys Rev E 83:051703

    Article  Google Scholar 

  89. Selinger RLB, Mbanga BL, Selinger JV (2008) Modeling liquid crystal elastomers: actuators, pumps, and robots – art. no. 69110A. Emerging Liquid Crystal Technologies III. 6911, p. A9110

    Google Scholar 

Download references

Acknowledgements

P. P.-M. acknowledges support from the NSF under DMR 0907508, the collaboration of P. Luchette, J. Neal and T. Toth-Katona, and discussions with D. Broer, H. Finkelmann, H. Godinho, T. Ikeda, M. Warner and Xiaoyu Zheng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Palffy-Muhoray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palffy-Muhoray, P. (2012). Liquid Crystal Elastomers and Light. In: de Jeu, W. (eds) Liquid Crystal Elastomers: Materials and Applications. Advances in Polymer Science, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_165

Download citation

Publish with us

Policies and ethics