Skip to main content

Characterization Methods for Shape-Memory Polymers

  • Chapter
  • First Online:
Shape-Memory Polymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 226))

Abstract

Shape-memory polymers (SMPs) are able to fix a temporary deformed shape and recover their original permanent shape upon application of an external stimulus such as heat or light. A shape-memory functionalization can be realized for polymer based materials with an appropriate morphology by application of a specific shape-memory creation procedure (SMCP). Specific characterization methods have been tailored to explore the structure-function relations of SMPs in respective applications. This paper reviews characterization methods on different length scales from the molecular to the macroscopic level.

On the molecular morphological level SMPs are comprised of netpoints determining the permanent shape and reversible crosslinks fixing the temporary shape. For polymers with covalent permanent netpoints the crosslinking density plays an important role, which can be quantified by means of swelling experiments or nuclear magnetic resonance (NMR) methods. In contrast, thermoplastic SMPs are typically phase-segregated polymers, where each domain is related to a different thermal transition, which can be explored by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Further suitable techniques for investigations of the SMP morphology on different levels of hierarchy are polarized light microscopy (POM), scanning or transmission electron microscopy (SEM, TEM) and atomic force microscopy (AFM) as well as wide and small X-ray scattering (WAXS, SAXS).

On the macroscopic level the extent to which a temporary deformation can be fixed and the recovery of the permanent shape or the recovery stress are the most important characteristics of the shape-memory effect (SME), which can be quantified in cyclic, thermomechanical tensile tests or bending tests. Such cyclic tests consist of a SMCP module that can be performed either under stress or strain control followed by a recovery module under stress-free or constant strain conditions. The obtained shape-memory properties are strongly influenced by temperature dependent test parameters like deformation and fixation temperature or applied heating and cooling rate. In addition cyclic, photomechanical testing of light-induced dual-shape polymers, where the temporary shape is fixed by photoreversible chemical crosslinks and the testing of magnetically-induced shape-memory composites are described. In contrast multi-phase polymer networks, which exhibit a triple-shape effect, are explored in cyclic, thermomechanical experiments utilizing a specific two-step SMCP. Furthermore a selection of application-oriented tests for characterization of SME is presented.

Finally, as part of a comprehensive characterization, modeling approaches for simulating the thermomechanical behavior of SMPs are presented. At the beginning linear viscoelastic models were applied consisting of coupled spring, dashpot and frictional elements. More recent approaches consider in detail the specific molecular transition underlying the SME, e.g. glass or melting transition. Currently models that incorporate the strain rate dependence and time dependent behavior are under development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

βc :

Cooling rate

βh :

Heating rate

ε:

Nominal strain

εb :

Strain at break

εm :

Default strain in a cyclic, thermomechanical experiment

εp :

Recovered strain in a cyclic, thermomechanical experiment

εu :

Fixed strain after unloading in a cyclic, thermomechanical experiment

σ:

Stress

σm :

Stress after stretching a sample to εm in a cyclic, thermomechanical experiment

DMTA:

Dynamic mechanical thermal analysis

DSC:

Differential scanning calorimetry

E :

Young’s modulus

E ′ :

Storage modulus

E ′′ :

Loss modulus

G :

Shear modulus

HRMAS:

High resolution magic angle spinning in NMR-spectroscopy

Hz:

Hertz

IPN:

Interpenetrating polymer network

MA:

Methacrylate

m d :

Mass of the extracted and dried network

m iso :

Mass of the unextracted polymer network

M n :

Number average molecular weight

m q :

Mass of the swollen polymer network

N :

Consecutive number in a cyclic, thermomechanical experiment

NMR:

Nuclear magnetic resonance

Q :

Degree of swelling

R f :

Shape fixity ratio

R r :

Shape recovery ratio

SME:

Shape-memory effect

SMP:

Shape-memory polymer

tanδ:

Loss factor

T deform :

Deformation temperature

T g :

Glass transition temperature

T high :

Temperature at which recovery is performed

T low :

Temperature at which temporary shape is fixed

T m :

Melting temperature

T sw :

Switching temperature of the SME

T trans :

Thermal transition temperature (T m or T g)

T trans,A :

Thermal transition temperature of shape A for materials with two shapes in memory

T trans,B :

Thermal transition temperature of shape B for materials with two shapes in memory

w G :

Gel content

References

  1. Behl M, Lendlein A (2007) Soft Matter 3:58

    Article  CAS  Google Scholar 

  2. Behl M, Lendlein A (2007) Mater Today 10:20

    Article  CAS  Google Scholar 

  3. Lendlein A, Kelch S (2005) Mater Sci Forum 492:219

    Article  Google Scholar 

  4. Lendlein A, Kelch S (2002) Angew Chem Int Ed 41:2034

    Article  CAS  Google Scholar 

  5. Liu C, Qin H, Mather PT (2007) J Mater Chem 17:1543

    Article  CAS  Google Scholar 

  6. Beloshenko VA, Varyukhin VN, Voznyak YV (2005) Uspekhi Khimii 74:285

    Google Scholar 

  7. Gunes IS, Jana SC (2008) J Nanosci Nanotechnol 8:1616

    Article  CAS  Google Scholar 

  8. Alteheld A, Feng YK, Kelch S, Lendlein A (2005) Angew Chem Int Ed 44:1188

    Article  CAS  Google Scholar 

  9. Lendlein A, Schmidt AM, Langer R (2001) Proc Natl Acad Sci USA 98:842

    CAS  Google Scholar 

  10. Bellin I, Kelch S, Langer R, Lendlein A (2006) Proc Natl Acad Sci USA 103:18043

    Article  CAS  Google Scholar 

  11. Takeda K, Akiyama M, Yamamizu T (1988) Angew Makromol Chem 157:123

    Article  CAS  Google Scholar 

  12. Liu CD, Chun SB, Mather PT, Zheng L, Haley EH, Coughlin EB (2002) Macromolecules 35:9868

    Article  CAS  Google Scholar 

  13. Choi NY, Lendlein A (2007) Soft Matter 3:901

    Article  CAS  Google Scholar 

  14. Min CC, Cui WJ, Bei JZ, Wang SG (2005) Polym Adv Technol 16:608

    Article  CAS  Google Scholar 

  15. Korley LTJ, Pate BD, Thomas EL, Hammond PT (2006) Polymer 47:3073

    Article  CAS  Google Scholar 

  16. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Macromolecules 34:6431

    Article  CAS  Google Scholar 

  17. Jeon HG, Mather PT, Haddad TS (2000) Polym Int 49:453

    Article  CAS  Google Scholar 

  18. Lendlein A, Kelch S (2005) Clin Hemorheol Microcirc 32:105

    CAS  Google Scholar 

  19. Lendlein A, Langer R (2002) Science 296:1673

    Article  Google Scholar 

  20. Luo XL, Zhang XY, Wang MT, Ma DH, Xu M, Li FK (1997) J Appl Polym Sci 64:2433

    Article  CAS  Google Scholar 

  21. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Proc Natl Acad Sci USA 103:3540

    Article  CAS  Google Scholar 

  22. Sakurai K, Shirakawa Y, Kashiwagi T, Takahashi T (1994) Polymer 35:4238

    Article  CAS  Google Scholar 

  23. Sakurai K, Tanaka H, Ogawa N, Takahashi T (1997) J Macromol Sci Phys 36:703

    Article  Google Scholar 

  24. Behl M, Bellin I, Kelch S, Wagermaier W, Lendlein A (2009) Adv Funct Mater 19:102

    Article  CAS  Google Scholar 

  25. Behl M, Bellin I, Kelch S, Wagermaier W, Lendlein A (2009) Material design for regenerative medicine, drug delivery, and targeting/imaging. In: Shastri VP, Lendlein A, Liu L-S, Mikos A, Mitragotri S (eds) Mat Res Soc Symp Proc, vol 1140. Materials Research Society, Warrendale, PA, 1140:HH01

    Google Scholar 

  26. Bellin I, Kelch S, Lendlein A (2007) J Mater Chem 17:2885

    Article  CAS  Google Scholar 

  27. Kolesov IS, Radusch H-J (2008) Express Polym Lett 2:461

    Article  CAS  Google Scholar 

  28. Jiang HY, Kelch S, Lendlein A (2006) Adv Mater 18:1471

    Article  CAS  Google Scholar 

  29. Lendlein A, Jiang HY, Junger O, Langer R (2005) Nature 434:879

    Article  CAS  Google Scholar 

  30. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Mat Sci Eng A Struct 471:57

    Article  Google Scholar 

  31. Razzaq MY, Frormann L (2007) Polym Compos 28:287

    Article  CAS  Google Scholar 

  32. Mark JE (ed) (2004) Physical properties of polymers. Cambridge University Press, Cambridge, UK

    Google Scholar 

  33. Baer E, Hiltner A, Keith HD (1987) Science 235:1015

    Article  CAS  Google Scholar 

  34. Lakes R (1993) Nature 361:511

    Article  Google Scholar 

  35. Tosaka M, Kawakami D, Senoo K, Kohjiya S, Ikeda Y, Toki S, Hsiao BS (2006) Macromolecules 39:5100

    Article  CAS  Google Scholar 

  36. Lin JR, Chen LW (1999) J Appl Polym Sci 73:1305

    Article  CAS  Google Scholar 

  37. Li FK, Chen Y, Zhu W, Zhang X, Xu M (1998) Polymer 39:6929

    Article  CAS  Google Scholar 

  38. Flory PJ, Rehner JJ (1943) J Chem Phys 11:512

    Article  CAS  Google Scholar 

  39. Rubinstein M, Colby RH (eds) (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  40. Heinrich G, Straube E, Helmis G (1980) Acta Polymerica 31:275

    Article  CAS  Google Scholar 

  41. Mark JE (ed) (2006) Physical properties of polymer handbook. Springer, New York

    Google Scholar 

  42. Webb GA, Aliew AE (eds) (2006) Nuclear magnetic resonance. Chemical Society (UK), Royal Society of Chemistry, London

    Google Scholar 

  43. Bertmer M, Buda A, Blomenkamp-Hofges I, Kelch S, Lendlein A (2005) Macromol Symp 230:110

    Article  CAS  Google Scholar 

  44. Bertmer M, Buda A, Blomenkamp-Hofges I, Kelch S, Lendlein A (2005) Macromolecules 38:3793

    Article  CAS  Google Scholar 

  45. Powers DS, Vaia RA, Koerner H, Serres J, Mirau PA (2008) Macromolecules 41:4290

    Article  CAS  Google Scholar 

  46. Ward IM, Sweeney J (eds) (2004) An introduction to the mechanical properties of solid polymers. Wiley, Chichester

    Google Scholar 

  47. Chartoff R, Weissman P, Sircar A (eds) (1994) Application of dynamic mechanical methods to Tg determination in polymers: an overview. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  48. Höhne G, Hemminger W, Flammersheim HJ (eds) (2003) Differential scanning calorimetry. Springer, Berlin

    Google Scholar 

  49. Navard P, Haudin JM (1984) J Therm Anal 29:415

    Article  CAS  Google Scholar 

  50. Gill PS, Sauerbrunn SR, Reading M (1993) J Therm Anal 40:931

    Article  CAS  Google Scholar 

  51. Sawyer LC, Grubb DT, Meyers GF (eds) (2008) Polymer microscopy. Springer, New York

    Google Scholar 

  52. Cowie JMG, Arrighi V (eds) (2008) Polymers: chemistry and physics of modern materials. CRC, Boca Raton

    Google Scholar 

  53. Gedde UW (ed) (1995) Polymer physics. Chapman & Hall, London

    Google Scholar 

  54. Qin HH, Mather PT (2009) Macromolecules 42:273

    Article  CAS  Google Scholar 

  55. Cao Q, Liu P (2006) Polym Bull 57:889

    Article  CAS  Google Scholar 

  56. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Polym Int 57:651

    Article  CAS  Google Scholar 

  57. Lin JR, Chen LW (1998) J Appl Polym Sci 69:1563

    Article  CAS  Google Scholar 

  58. Trent JS, Scheinbeim JI, Couchman PR (1983) Macromolecules 16:589

    Article  CAS  Google Scholar 

  59. Stribeck N (ed) (2007) X-ray scattering of soft matter. Springer, Berlin

    Google Scholar 

  60. Kasai N, Kakudo M (ed) (2005) X-ray diffraction by macromolecules. Kodansha, Tokyo

    Google Scholar 

  61. Ji FL, Zhu Y, Hu JL, Liu Y, Yeung LY, Ye GD (2006) Smart Mater Struct 15:1547

    Article  CAS  Google Scholar 

  62. Takahashi T, Hayashi N, Hayashi S (1996) J Appl Polym Sci 60:1061

    Article  CAS  Google Scholar 

  63. Gall K, Yakacki CM, Liu YP, Shandas R, Willett N, Anseth KS (2005) J Biomed Mater Res A 73A:339

    Article  CAS  Google Scholar 

  64. Liu YP, Gall K, Dunn ML, McCluskey P (2003) Smart Mater Struct 12:947

    Article  CAS  Google Scholar 

  65. Capaccio G, Ward IM (1982) Colloid Polym Sci 260:46

    Article  CAS  Google Scholar 

  66. Chowdhury SR, Das CK (2000) J Appl Polym Sci 77:2088

    Article  CAS  Google Scholar 

  67. Chowdhury SR, Mishra JK, Das CK (2000) Polym Degrad Stab 70:199

    Article  CAS  Google Scholar 

  68. Lin JR, Chen LW (1998) J Appl Polym Sci 69:1575

    Article  CAS  Google Scholar 

  69. Khonakdar HA, Jafari SH, Rasouli S, Morshedian J, Abedini H (2007) Macromol Theory Simul 16:43

    Article  CAS  Google Scholar 

  70. Ping P, Wang WS, Chen XS, Jing XB (2005) Biomacromolecules 6:587

    Article  Google Scholar 

  71. Liu YP, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Int J Plast 22:279

    Article  CAS  Google Scholar 

  72. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Biomaterials 28:2255

    Article  CAS  Google Scholar 

  73. Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Biomacromolecules 8:1018

    Article  CAS  Google Scholar 

  74. Miaudet P, Derre A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P (2007) Science 318:1294

    Article  CAS  Google Scholar 

  75. Choi NY, Kelch S, Lendlein A (2006) Adv Eng Mater 8:439

    Article  CAS  Google Scholar 

  76. Kelch S, Choi NY, Wang ZG, Lendlein A (2008) Adv Eng Mat 10:494

    Article  CAS  Google Scholar 

  77. Lendlein A, Schmidt AM, Schroeter M, Langer R (2005) J Polym Sci Pol Chem 43:1369

    Article  CAS  Google Scholar 

  78. Weigel T, Mohr R, Lendlein A (2009) Smart Mater Struct 18:025011

    Article  Google Scholar 

  79. Hu J (ed) (2007) Shape memory polymers and textiles. CRC, Boca Raton

    Google Scholar 

  80. Abrahamson ER, Lake MS, Munshi NA, Gall K (2003) J Intel Mat Syst Str 14:623

    Article  CAS  Google Scholar 

  81. Bhattacharyya A, Tobushi H (2000) Polym Eng Sci 40:2498

    Article  CAS  Google Scholar 

  82. Li FK, Larock RC (2002) J Appl Polym Sci 84:1533

    Article  CAS  Google Scholar 

  83. Lin JR, Chen LW (1999) J Polym Res Taiwan 6:35

    Article  CAS  Google Scholar 

  84. Morshedian J, Khonakdar HA, Rasouli S (2005) Macromol Theory Simul 14:428

    Article  CAS  Google Scholar 

  85. Tobushi H, Hashimoto T, Hayashi S, Yamada E (1997) J Intel Mat Syst Str 8:711

    Article  CAS  Google Scholar 

  86. Tobushi H, Okumura K, Hayashi S, Ito N (2001) Mech Mater 33:545

    Article  Google Scholar 

  87. Diani J, Liu YP, Gall K (2006) Polym Eng Sci 46:486

    Article  CAS  Google Scholar 

  88. Nguyen TD, Qi HJ, Castro F, Long KN (2008) J Mech Phys Solids 56:2792

    Article  CAS  Google Scholar 

  89. Barot G, Rao IJ (2006) Z Angew Math Mech 57:652

    Article  Google Scholar 

  90. Barot G, Rao IJ, Rajagopal KR (2008) Int J Eng Sci 46:325

    Article  CAS  Google Scholar 

  91. Rao IJ (2002) P SPE-ANTEC 1936

    Google Scholar 

  92. Liu Y, Gall K, Dunn ML, Greenberg AR (2005) Mechanically active materials. In: Van Vliet KJ, James RD, Mather PT, Crone WC (eds) Mat Res Soc Symp Proc, vol 855E. Materials Research Society, Warrendale, PA, W5.8

    Google Scholar 

  93. Chen YC, Lagoudas DC (2008) J Mech Phys Solids 56:1752

    Article  CAS  Google Scholar 

  94. Chen YC, Lagoudas DC (2008) J Mech Phys Solids 56:1766

    Article  CAS  Google Scholar 

  95. Qi HJ, Nguyen TD, Castroa F, Yakacki CM, ShandaSa R (2008) J Mech Phys Solids 56:1730

    Article  CAS  Google Scholar 

  96. Adam G, Gibbs JH (1965) J Chem Phys 43:139

    Article  CAS  Google Scholar 

  97. Wang MT, Zhang LD (1999) J Polym Sci Polym Phys 37:101

    Article  CAS  Google Scholar 

  98. Kafka V (2008) Int J Plast 24:1533

    Article  CAS  Google Scholar 

  99. Diani J, Gall K (2007) Smart Mater Struct 16:1575

    Article  CAS  Google Scholar 

  100. Madbouly SA, Lendlein A (2009) Shape-Memory Composites. In: Advances in Polymer Sciences, Volume Shape-Memory Polymers, Springer

    Google Scholar 

  101. Behl M, Zotzmann J, Lendlein A (2009) Shape-Memory Polymers and Shape-Changing Polymers. In: Advances in Polymer Sciences, Volume Shape-Memory Polymers, Springer

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. K. Schmälzlin for valuable support with figures and format issues as well as to Prof. Dr. D. Hofmann for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagermaier, W., Kratz, K., Heuchel, M., Lendlein, A. (2009). Characterization Methods for Shape-Memory Polymers. In: Lendlein, A. (eds) Shape-Memory Polymers. Advances in Polymer Science, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_25

Download citation

Publish with us

Policies and ethics