Skip to main content

Lignin Structure, Properties, and Applications

  • Chapter
  • First Online:
Book cover Biopolymers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 232))

Abstract

Polymeric features of lignin and its potential as a bio-resource are reviewed, focusing on its characteristic structure and properties. Lignin is a random copolymer consisting of phenylpropane units having characteristic side chains. Lignin slightly crosslinks and takes an amorphous structure in the solid state. The molecular motion is observed as glass transition by thermal, viscoelastic and spectroscopic measurements. The hydroxyl group of lignin plays a crucial role in interaction with water. By chemical and thermal decomposition, a wide range of chemicals can be obtained from lignin that can be used as starting materials for synthetic polymers, such as polyesters, polyethers, and polystyrene derivatives. At the same time, a variety of polymers can be derived from lignin by simple chemical modification. The hydroxyl group acts as a reaction site for the above chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ρ:

Apparent density

σ:

Breaking strength

σ10 :

Strength at 10% strain

τc :

Correlation time

ADL:

Acetylated DL

AFM:

Atomic force microscopy

BDF:

Biodiesel fuel

b-NMR:

Broad line nuclear magnetic resonance

CL:

Caprolactone

DEG:

Dietyleneglycol

DBTDL:

Di-n-butyltin dilaurate

DEG:

Diethylene glycol

DL:

Dioxane lignin

DMSO:

Dimethylsulfoxide

DMA:

Dynamic mechanical analysis

DMF:

Dimethylformamide

DSC:

Differential scanning calorimetry

DTA:

Differential thermal analysis

E :

Compression modulus

E a :

Apparent activation energy

ESR:

Electron spin resonance

FTIR:

Fourier transform infrared spectrometry

GPC:

Gel permeation chromatography

HL:

Hydrolysis lignin

HLPCL:

HL-based polycaprolactone

IR:

Infrared spectrometry

KL:

Kraft lignin

KLD:

KL polyol derived from DEG

KLT:

KL polyol derived from TEG

KLP:

KL polyol derived from PEG

KLDPU:

PU derived from KLD

KLTPU:

PU derived from KLT

KLPPU:

PU derived from KPP

KMHS:

Kuhn-Mark-Houwik-Sakurada

LALLS:

Static law angle laser light scattering

LCC:

Lignin carbohydrate complex

LS:

Sodium lignosulfonate

LSD:

LS polyol derived from DEG

LSPCL:

LS-based polycaprolactone

LST:

LS polyol derived from TEG

LSP:

LS polyol derived from PEG

LSDPU:

PU derived from LS D

LSTPU:

PU derived from LS T

LSPPU:

PU derived from LS P

MDI:

Poly(phenylene methylene) polyisocyanate

ML:

Molasses

MLD:

ML polyol derived from DEG

M n :

Number average molecular mass

M w :

Weight average molecular mass

MS:

Mass spectrometry

MWL:

Milled wood lignin

n :

Number of repeating unit of oxyethylene chain

NMR:

Nuclear magnetic resonance spectrometry

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PU:

Polyurethane

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

T 1 :

Longitudinal relaxation time

T 2 :

Transverse relaxation time

TEG:

Triethylene glycol

TG:

Thermogravimetry

TG/FTIR:

Simultaneous measurement of TG and FTIR

TG/MS:

Simultaneous measurement of TG and MS

THF:

Tetrahydrofuran

TMA:

Thermomechanical analysis

T c :

Crystallization temperature

T d :

Thermal decomposition temperature

T g :

Glass transition temperature

T m :

Melting temperature

T s :

Softening temperature

UV:

Ultra violet spectrometry

VPO:

Vapor pressure osmometry

W c :

Water content

W nf :

Non-freezing water content

ΔC p :

Heat capacity difference at T g

ΔH m :

Melting enthalpy

References

  1. Sarkanen KV, Ludwig CH (1971) Lignins, occurrence, formation, structure and reactions. Wiley, NY

    Google Scholar 

  2. Lin SY, Dence CW (1992) Methods in lignin chemistry. Springer, Berlin

    Book  Google Scholar 

  3. Hu TQ (2008) Characterization of lignocellulosic materials. Blackwell, Oxford

    Book  Google Scholar 

  4. Rezanowich A, Goring DAI (1960) Polyelectrolyte expansion of a lignin sulfonate microgel. J Colloid Sci 15:452–471

    Article  CAS  Google Scholar 

  5. Ramiah MV, Goring DAI (1965) The thermal expansion of cellulose, hemicelluloses and lignin. J Polym Sci C1:27–48

    Google Scholar 

  6. Goring DAI (1971) Polymer properties of lignin and lignin derivatives. In: Sarkanen KV, Ludwig CH (eds) Lignins, occurrence, formation, structure and reactions.Wiley, NY, pp 695–865

    Google Scholar 

  7. Donaldson L, Hague J, Snell R (2001) Lignin distribution in coppice poplar, linseed and wheat straw. Holzforschung 55:379–385

    Article  CAS  Google Scholar 

  8. Barakat A, Chabbert B, Cathala B (2007) Effect of reaction media concentration on the solubility and the chemical structure of lignin model compounds. Phytochemistry 68:118–25

    Article  CAS  Google Scholar 

  9. Glasser WG, Glasser HR (1974) Simulation of reactions with lignin by computer (SIMREL). I Polymerization of coniferyl alcohol monomers. Macromolecules 7:17–27

    CAS  Google Scholar 

  10. Glasser WG, Glasser HR (1974) Simulation of reactions with lignin by computer (Simrel) II A model for softwood lignin. Holzforschung 28:5–11

    Article  CAS  Google Scholar 

  11. Glasser WG, Glasser HR (1976) Simulation of reactions with lignin by computer (Simrel) III The distribution of hydrogen in lignin. Cell Chem Tecnol 10:23–37

    CAS  Google Scholar 

  12. Adler E, Marton J (1959) Zur Kenntonis der Carbonylgruppen im Lignin I. Acta Chem Scand 13:75–96

    Article  CAS  Google Scholar 

  13. Nimz HH (1974) Beech lignin-proposal of a constitutional scheme. Angew Chem Int Ed 13:313–321

    Article  Google Scholar 

  14. Balakshin MY, Capanema EA, Chang H-M (2008) Recent advances in the isolation and analysis of lignins and lignin-carbohydrate complexes. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell, Oxford, pp 148–170

    Chapter  Google Scholar 

  15. Koshijima T, Watanabe T, Yaku F (1998) Structure and properties of the lignin-carbohydrate polymer as an amphipathick substance. In: Glasser WG, Sarkanen S (eds) Lignin properties and materials. American Chemical Society, Washington, DC, pp11–28

    Google Scholar 

  16. Dong D, Fircke AL (1995) Intrinsic viscosity and the molecular weight of kraft lignin. Polym 36:2075–2078

    Article  CAS  Google Scholar 

  17. Hatakeyama H, Iwashita K, Meshitsuka G Nakano J (1975) Effect of molecular weight on glass transition temperature of lignin. Mokuzai Gakkaishi 21:618–623

    Google Scholar 

  18. Mörck R, Yoshida H, Kringstad KP Hatakeyama H (1986) Fractionation of kraft lignin by successive extraction with organic solvents. Functional groups, 13C-NMR spectra and molecular weight distributions. Holzforschung 40(Suppl):51

    Google Scholar 

  19. Forss K, Kokkonen R, Sagfors P-E (1989) Detemination of molecular mass distribution studies of lignins by gel permeation chromatography. In: Glasser WG, Sarkanen S (eds) Lignin properties and materials. American Chemical Society, Washington, DC, pp 124–133

    Chapter  Google Scholar 

  20. Gellerstedt G (1992) Gel permeation chromatography. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 487–497

    Chapter  Google Scholar 

  21. Pla F (1992) Light scattering methods. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 498–508

    Chapter  Google Scholar 

  22. Dong D, Fircke AL (1995) Effect of multiple puling variables on the molecular weight and molecular weight distribution of kraft lignin. J Wood Chem Technol 15:369–393

    Article  CAS  Google Scholar 

  23. Froment P, Pla F (1989) Detemination of average molecular weight and molecular weight distribution of lignin. In: Glasser WG, Sarkanen S (eds) Lignin properties and materials. American Chemical Society, Washington, DC, pp 134–143

    Chapter  Google Scholar 

  24. Pla F (1992) Vapor pressure osmometry. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 509–517

    Chapter  Google Scholar 

  25. Himmel ME, Tatsumoto L, Oh KK Grohmann K, Johnson DK, Chum JL (1989) Determination of a polymer’s molecular weight distribution by analytical ultracentrifugation. In: Glasser WG, Sarkanen S (eds) Lignin properties and materials. American Chemical Society, Washington DC, pp 82–99

    Google Scholar 

  26. Ben-Ghedalia B, Yosef E (1994) Effect of isolation procedure on molecular weight distribution of wheat straw lignins. J Agric Food Chem 42:649–652

    Article  CAS  Google Scholar 

  27. Lindner A, Wegner G (1990) Characterization of lignins from organosolv pulping according to the organocell process. Part. 3 Molecular weight determination and investigation of reactions isolated by GPC. J Wood Chem Technol 10:331–350

    Article  CAS  Google Scholar 

  28. Glennie DW (1971) Reactions in sulfite pulping. In: Sarkanen KV, Ludwig CH (eds) Lignins, occurrence, formation, structure and reactions.Wiley, NY, pp 597–637

    Google Scholar 

  29. Rezanowich A, Yean WQ, Goring DAI (1964) High-resolution electron microscopy of sodium ligno sulfonate. J Appl Polym Sci 81:801–1812

    Google Scholar 

  30. Lebo SE, Braten SM, Fredheim GE Lutnaes BF, Lauten RA, Myrvold BO, McNally TJ (2008) Recent advances in the characterization of lignosulfonate. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell, Oxford, pp 188–205

    Google Scholar 

  31. Glasser WG, Dave V, Frzier CE (1993) Molecular weight distribution of semi-commerical lignin derivatives. J Wood Chem Technol 13:545–559

    Article  CAS  Google Scholar 

  32. Schiochi EJ, Ward TC, Haney MA, Mahn B (1990) The absolute molecular weight distribution of hydroxypropylated lignins. Macromolecules 23:420–1429

    Google Scholar 

  33. Westermark U, Gusafsson K (1994) Molecular size distribution of wood polymers in birch draft pulps. Holzforshung 48:146–150

    Article  CAS  Google Scholar 

  34. Hatakeyama T, Hatakeyama H (1982) Temperature dependence of x-ray diffractograms of amorphous lignins and polystyrenes. Polymer 23:475–477

    Article  CAS  Google Scholar 

  35. Hatakeyama T (1982) X-ray analysis of liquid to liquid transition of polystyrene. J Macromol Sci Phys B21:299–305

    Article  CAS  Google Scholar 

  36. Hatakeyama T, Quinn FX (1999) Thermal analysis, fundamentals and applications to polymer science. 2nd edn, Wiley, UK

    Google Scholar 

  37. Hatakeyama T, Hatakeyama H (1995) Effect of chemical structure of amorphous polymers on heat capacity difference at glass transition temperature. Thermochim Acta 267:249–257

    Article  CAS  Google Scholar 

  38. Yano S, Hatakeyama H, Hatakeyama T (1984) Temperature dependence of the tensile properties of lignin/paper composites. Polymer 25:890–893

    Article  CAS  Google Scholar 

  39. Hatakeyama H, Kubota K, Nakano J (1972) Thermal analysis of lignin by differential scanning calorimetry. Cell Chem Technol 6:521–529

    CAS  Google Scholar 

  40. Hatakeyama T, Nakamura K, Hatakeyama H (1982) Studies on heat capacity of cellulose and lignin by differential scanning calorimetry. Polymer 23:1801–1804

    Article  CAS  Google Scholar 

  41. Hatakeyama H (1992) thermal analysis. In: Lin SY, Dence CW (eds) Wood science, methods in lignin chemistry. Springer, Berlin, pp 200–214

    Chapter  Google Scholar 

  42. Hatakeyama T, Hatakeyama H (2004) Thermal properties of green polymers and biocomposites. Kluwer Academic, Dordrecht

    Google Scholar 

  43. Nguyen T, Zavarin E, Barrell EM II (1981) Thermal analysis of lignocellulosic materialas. Part I Unmodified materials. J Macromol Sci Rev Macromol Chem C20:1–65

    Google Scholar 

  44. Jain RK, Glasser WG (1993) Lignin derivatives II Functional ethers. Holzforschung 47: 325–332

    Article  CAS  Google Scholar 

  45. Yano S, Rigdahl M, Kolseth P, Ruvo A (1984) Water-induced softening lignosulfonates Part 1. Effect of molecular mass. Svensk Papperstidn 87:R170–R176

    CAS  Google Scholar 

  46. Yano S, Rigdahl M, Kolseth P, Ruvo A (1984) Water-induced softening lignosulfonates Part 1. Effect of counter ion. Svensk Papperstidning 88:R10–R14

    Google Scholar 

  47. Baumberger S, Dole P, Lapierre C (2002) Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lingins. J Agric Food Chem 50:2450–2453

    Article  CAS  Google Scholar 

  48. Laborie M-PG, Salmén L, Frazler CE (2004) Cooperativity analysis of the in situ lignin glass transition. Holzforschung 58:129–133

    Article  CAS  Google Scholar 

  49. Hatakeyama H, Nakamura K, Hatakeyama T (1980) Studies on factors affecting the molecular motion of lignin and lignin-related polystyrene derivatives. Trans Pulp Pap Canada 81: 105–110

    Google Scholar 

  50. Hatakeyama H, Nakano J (1970) Electron spin resonance studies on lignin and lignin model compounds. Cell Chem Technol 4:281–291

    CAS  Google Scholar 

  51. Hatakeyama H, Nakano J, Hatano A, Migita N (1969) Variation of infrared spectra with temperature for lignin and lignin model compounds. Tappi 52:1724–1728

    CAS  Google Scholar 

  52. Hatakeyama T, Hirose S, Hatakeyama H (1983) Differential scanning calorimetric studies on bound water in 1.4-dioxane acidolysis lignin. Macromol Chem 184:1265–1274

    Article  CAS  Google Scholar 

  53. Hatakeyama H, Nakano J (1970) Nuclear magnetic resonance studies on lignin in solid state. Tappi 53:472–475

    CAS  Google Scholar 

  54. Hatakeyama H, Tsujimoto Y, Hirose S Hatakeyama T (2009) 2009 ISFWPC, OSLO, June 15–18

    Google Scholar 

  55. Nakamura K, Hatakeyama T, Hatakeyama H (1981) Differential scanning calorimetric studies on the glass transition temperature of polyhydroxystyrene derivatives containing sorbed water. Polymer 22:473–476

    Article  CAS  Google Scholar 

  56. Hatakeyama H (1998) In: Hatakeyama T, Liu Z (eds) Handbook of thermal analysis. Wiely, Chichester, pp 144

    Google Scholar 

  57. Salmén L (1984) Viscoelastic properties of in situ lignin under water-saturated conditions, J Materials Sci 19:3090–3096

    Article  Google Scholar 

  58. Olsson A-M, Salmen L (1997) The effect of lignin composition on the viscoelastic properties of wood. Nordic Pulp and Pap Res J 12:140–144

    Article  CAS  Google Scholar 

  59. Hatakeyama H, Hatakeyama T (1998) Interaction between water and hydrophilic polymers. Thermochim Acta 308:3–22

    Article  CAS  Google Scholar 

  60. Hatakeyama T, Nakamura K, Hatakeyama H (1988) Determination of bound water content in polymers by DTA, DSC and TG. Thermochim Acta 123:153–161

    Article  CAS  Google Scholar 

  61. Hatakeyama H, Hirose S, Hatakeyama T (1989) Differential scanning calorimetry and NMR studies on the water-sodium lignosulfonate system. In: Glasser WG, Sarkanen S (eds) Lignin, properties and materials. ACS Symposium Series 397. ACS, Washington, DC, pp 274–283

    Google Scholar 

  62. Woessner DE, Zimmerman J (1963) Nuclear transfer and anisotropic motional spin phenomena: relaxation-time temperature-dependence studies of water adsorbed on silica gel. IV J Chem Phys 67:1590–600

    Article  CAS  Google Scholar 

  63. Woessner DE, Snowden BS (1970) Pulsed nmr study of water in agar gels. J Colloid Interface Sci 34:290–299

    Article  CAS  Google Scholar 

  64. Pepper JM, Baylis PET, Adler E (1959) The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane-water medium. Can J Chem 37:1241–248

    Article  CAS  Google Scholar 

  65. Higuchi T, Tanahshi M, Sato A (1972) Acidolysis of bamboo lignin. I Gas-liquid chromatography and mass spectrometry of acidolysis monomers. Mokuzai Gakkaishi 18:183–189

    CAS  Google Scholar 

  66. Nakatsubo F, Tanahashi H, Higuchi T (1972) Acidolysis of bamboo lignins II Isolation and identification of acidolysis products. Wood Res 53:9–18

    Google Scholar 

  67. Lundquist K (1976) Low-molecular weight lignin hydrolysis products. Appl Polym Symp 28:1393–1407

    CAS  Google Scholar 

  68. Lapierre C, Roland C, Monties B (1983) Charaterization of poplar lignins acidolysis products capillary gas-liquid chromatography of monomeric compounds. Holzforshung 37:189–198

    Article  CAS  Google Scholar 

  69. Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22:46–60

    Article  CAS  Google Scholar 

  70. Freudenberg K (1939) Uber lignin. Angew Chem 52:362–363

    Article  CAS  Google Scholar 

  71. Leopold B (1952) Studies of lignin. III Oxidation of wood from picea abies (L.) Karst. (Norway spruce) with nitrobenzene and alkali. Acta Chem Scand 6:38–39

    Article  Google Scholar 

  72. Creighton RHJ, Gibbs RD, Hibbert H (1944) Studies on lignin and related compounds. LXXV. Alkaline nitrobenzene oxidation of plant materials and application totaxonomic classification. J Am Chem Soc 66:32–37

    CAS  Google Scholar 

  73. Higuchi T, Ito Y, Shimada M, Kawamura I (1967) Chemical properties of milled wood lignin of grasses. Phytochemisty 6:1551–1556

    Article  CAS  Google Scholar 

  74. Westermark U (1985) The occurrence of p-hydroxyphenylpropane units in the middle-lamella lignin of spruce (Picea abies). Wood Sci Technol 19:223–232

    Article  CAS  Google Scholar 

  75. Freudenberg K, Janson A, Knopf E, Haag A (1936) Zur Kenntnis des Lignins. Chem Ber 69:1415–1425

    Google Scholar 

  76. Larsson S, Miksche GE (1967) Gas chromatographic analysis of lignin oxidation products. The diphenyl ether linkage in lignin. Acta Chem Scand 21:1970–1971

    Article  CAS  Google Scholar 

  77. Glasser WG, Morohoshi N (1979) The structure of lignin in pulps. The distribution of interunit linkages. Tappi 62:101–105

    Google Scholar 

  78. Morohoshi N, Glasser WG (1979) The structure of lignins in pulps. Part 5 Gas and gel permeation chromatography of permanganate oxidation products. Wood Sci Technol 13:249–264

    Article  CAS  Google Scholar 

  79. Gellerstedt G, Lindfors E (1984) Structural changes in lignin during kraft pulping. Holzforschung 38:151–158

    Article  CAS  Google Scholar 

  80. Gellersted G, Northey RA (1989) Analysis of birch wood by oxidative degradation. Wood Sci Technol 23:75–83

    Article  Google Scholar 

  81. Langvik VA, Aakerback NH, Bjarne D (1994) Characterization of aromatic structures in humic and fulvic acids. Environ Int 20:61–5

    Article  CAS  Google Scholar 

  82. Tamminen T, Poppius-Levlin K, Aurela B, Hortling B (1997) Oxidative degradation of lignin by potassium permanganate. Method improvement. Holzforschung 51:155–157

    Article  CAS  Google Scholar 

  83. Sakakibara A (1992) hydrogenolysis. In: Lin SY, Dence CW eds. Wood science, methods in lignin chemistry, pp. 350–368. Springer, Berlin

    Chapter  Google Scholar 

  84. Sarkanen KV, Islam A, Anderson CD (1992) Ozonation. In: Lin SY, Dence CW (eds) Wood science, methods in lignin chemistry. Springer, Berlin, pp 387–406

    Chapter  Google Scholar 

  85. Hatakeyama H, Tonooka T, Nakano J, Migita N (1967) Ozonization of lignin model compounds. Kogyo Kagaku Zasshi. 70:2348–2352

    Article  Google Scholar 

  86. Tsutsumi Y, Islam A, Anderson D, Sarkanen KV (1990) Acidic permanganate oxidation of lignin model compounds: comparison with ozonolysis. Holzforschung 44:59–66

    Article  CAS  Google Scholar 

  87. Miksche GE (1972) Zum alkalischen Abbau der p-Alkoxyarylglycerin-β-arylatherstrukuturen des Lignins. Versuchemit erythro–Veratorylglycerin- β-guaiacylather. Acta Chem Scand 26:3275–3281

    Article  CAS  Google Scholar 

  88. Mbachu RAD, Manley RSJ (2003) Degradaton of lignin by ozone. I The kinetics of lignin degradation of ozone. J Polym Sci Chem Ed 19:2053–2063

    Google Scholar 

  89. Letumier F, Barbe J-M, Trichet A, Guilard R (1999) Ozonation reactions of monomer and dimer lignin models: influence of a catalytic amount of a manganese cyclam derivaties on the ozonation reaction. Ozone: Science & Engineering – The Journal of the International Ozone Association 21:53–67

    Google Scholar 

  90. Widsten P, Hortling B, Poppius-Levlin K (2004) Ozonation of conventional kraft and superbatch residual lignins in methanol/water and water. Holzforschung 58:363–368

    Article  CAS  Google Scholar 

  91. Mbachu RAD, Manley RSJ (1981) Degradation of lignin by ozone. II. Molecular weights and molecular weight distributions of the alkali-soluble degradation products. J Polym Sci, Polym Chem Edn 19:2065–78

    Article  CAS  Google Scholar 

  92. Yokoyama C, Nishi K, Takahashi S (1994) Functional group analysis of reaction products from thermolysis of lignin in ethylene glycol and diethylene glycol. Sekiyu Gakkaishi 37:576–583

    Article  CAS  Google Scholar 

  93. Yokoyama C, Nishi K, Nakjima A Kazue S (1998) Thermolysis of organosolv lignin. I Supercritical water and supercritical methanol. Sekiyu Gakkaishi 41:243–250

    Google Scholar 

  94. Simonova VV (2008) Thermolysis and steam activation of a mixture of lignin and washed-off petroleum water in the presence of copper acetate. Solid Fuel Chem 42:49–53

    Google Scholar 

  95. Wahyudiono, Kanetake T, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30:1113–1122

    Article  CAS  Google Scholar 

  96. Klein MT, Virk PS (2008) Modeling of lignin thermolysis. Energy Fuels 22:2175–2182

    Article  CAS  Google Scholar 

  97. Hatakeyama T, Nakamura K, Hatakeyama H (1978) Differential thermal analysis of styrene derivatives related to lignin. Polymer 19:593–594

    Article  CAS  Google Scholar 

  98. Hirose S, Hatakeyama H (1986) A kinetic study on lignin pyrolysis using integral method. Mokuzai Gakkishi 32:621–625

    CAS  Google Scholar 

  99. Jakob E, Faix O, Till F, Szénely TJ (1995) Thermogramivery/mass spectrometry study of six lignins within the scope of an international round robin test. Anal Appl Pyrolysis 35:167–179

    Article  Google Scholar 

  100. Serio MA, Charpenay S, Bassilakins R Solomon PR (1994) Measurement and modeling of lingin pyrolysis. Biomass Bioenergy 7:107–124

    Google Scholar 

  101. Hirose S, Kobashigawa K, Izuta Y, Hatakeyama H (1998) Thermal degradation of polyurethanes containing lignin studied by TG-FTIR. Polym Int 47:247–256

    Article  CAS  Google Scholar 

  102. Caballero JA, Font R, Marcilla A (1997) Pyrolysis of kraft lignin: yields and correlations. J Anal Appl Pyrolysis 39:161–183

    Article  CAS  Google Scholar 

  103. Fahmi R, Bridgwater A, Thain SC, Donnison IS, Morris PM, Yates N (2007) Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of Lolium and Festuca grasses. J Anal Appl Pyrol 80:16–23

    Article  CAS  Google Scholar 

  104. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20:388–393

    Article  CAS  Google Scholar 

  105. Hatakeyama T, Nakamura K, Hatakeyama H (2000) Vaporization of bound water associated with cellulose fibres. Thermochim Acta 352–353:233–239

    Article  Google Scholar 

  106. Lindberg JJ, Kuusela TA, Levon K (1989) Specialty polymers from lignin. In: Glasser WG, Sarkanen S (eds) Lignin properties and materials, ACS Symposium Series 397. American Chemical Society, Washington, DC, pp 134–143

    Google Scholar 

  107. Hatakeyama H, Hirose S, Hatakeyama T (1989) High-performance polymers from lignin degradation products. In: Glasser WG, Sarkanen S (eds) Lignin, properties and materials. ACS Symposium Series 397. American Chemical Society, Washington, DC, pp 205–218

    Google Scholar 

  108. Hatakeyama H, Hirose S, Yano S, Nakamura K, Hatakeyama T (1990) High-performance materials from lignocellulose. In: Kennedy JF, Phyllips GO, Williams PA (eds) Cellulose sources and exploitation. Ellis Horwood, Chichester, pp 466–471

    Google Scholar 

  109. Hatakeyama H, Hayashi E, Haraguchi T (1977) Biodegradation of poly(3-methoxy-4-hydroxy styrene). Polym J 18:759–763

    Article  CAS  Google Scholar 

  110. Nakamura K, Hatakeyama T, Hatakeyama H (1983) Effect of substituent groups on hydrogen bonding of polyhydroxystyrene derivatives. Polym J 15:361–366

    Article  CAS  Google Scholar 

  111. Nakamura K, Hatakeyama T, Hatakeyama H (1986) DSC Studies on hydrogen bonding of poly(4-hydroxy-3, 5-dimethoxystyrene) and related derivatives. Polym J 18:219–225

    Article  CAS  Google Scholar 

  112. Nakamura K, Hatakeyama T, Hatakeyama H (1983) 2 Relationship between hydrogen bonding and bound water in polyhydroxystyrene derivatives. Polymer 24:871–876

    Article  CAS  Google Scholar 

  113. Hirose S, Nakamura K, Hatakeyama T (1989) Molecular design of linear aromatic polymers derived from phenols related to lignin. In: Schuerch C (ed) Cellulose and wood. Wiley, NY, pp 1133–1144

    Google Scholar 

  114. Hirose S, Hatakeyama T, Hatakeyama H (1978) Synthesis and thermal analysis of polyethers related to lignin. Cell Chem Technol 12:713–720

    CAS  Google Scholar 

  115. Hatakeyama T, Yoshida H, Hirose S, Hatakeyama H (1990) Enthalpy relaxation of polyethers having phenylene groups in the main chain. Thermochim Acta 163:175–182

    Article  CAS  Google Scholar 

  116. Hirose S, Yoshida H, Hatakeyama T, Hatakeyama H (1992) Thermal behavior of aromatic poymers derived from penols related to lignin. In: Glasser WG, Hatakeyama H (eds) Viscoelasticity of biomaterials, ACS Symposium Series 489. ACS, Washington, DC, pp 385–394

    Chapter  Google Scholar 

  117. Hirose S, Hatakeyama H, Hatakeyama T (1983) Synthesis and thermal analysis of polyacylhydrazones having guaiacyl units with alkylene groups. Sen-i Gakkaishi 39:T496–T500

    Article  CAS  Google Scholar 

  118. Hirose S, Hatakeyama T, Hatakeyama H (1982) Synthesis and thermal analysis of polyesters having spiro-dioxane rings and guaiacyl units. Sen-i Gakkaishi 38:T507–T511

    Article  Google Scholar 

  119. Hirose S, Hatakeyama H, Hatakeyama T (1986) Isothermal crystallization of polybenzalazine derivatives synthesized from vanillin. Sen-i Gakkaishi 42:T49–T53

    Article  Google Scholar 

  120. Hirose S, Hatakeyama H, Hatakeyama T (1989) Synthesis and thermal analysis of aromatic polyesters derived from Phenols related to lignin. Wood Process Util 22:181–186

    Google Scholar 

  121. Hirose S, Hatakeyama T, Hatakeyama H (1993) Synthesis and thermal analysis of aromatic polyethers derived from degradation products of lignin. In: Kennedy JF, Phillips GO, Williams PA (eds) Cellulosic:chemical, biochemical and material aspects. Ellis Horwood, Chichester, pp 381–387

    Google Scholar 

  122. Belgacem MN, Blayo A, Gandini A (1996) Surface characterization of polysaccharides, lignins, printing ink pigments, and ink fillers by inverse gas chromatography. J Colloid Interface Sci 182:431–436

    Article  CAS  Google Scholar 

  123. Belgacem MN, Blayo A, Gandini A (2003) Organosolv lignin as a filler in inks, varnishes and paints. Indust Crop Produc 18:145–153

    Article  CAS  Google Scholar 

  124. Ghosh I, Jain RK, Glasser WG (1999) Multiphase materials with lignin. Part 15. Blends of cellulose acetate butyrate with lignin esters. J Appl Polym Sci 74:448–457

    Article  CAS  Google Scholar 

  125. Ghosh I, Jain RK, Glasser WG (2000) Multiphase materials with lignin. Part 16. Blends of biodegradable thermoplastics with lignin esters. In: Lignin: historical, biological, and materials perspectives, ACS Symposium Series 742. American Chemical Society, Washington DC, pp 331–350

    Google Scholar 

  126. Dave V, Glasser WG (1997) Cellulose-based fibers from liquid crystalline solutions: 5 Processing and morphology of CAB blends with lignin. Polymer 38:2121–2126

    Article  CAS  Google Scholar 

  127. Glasser WG, Wang HX (1989) Derivatives of lignin and ligninlike models with acrylate functionality. In: Glasser WG, Sarkanen S (eds) Lignin: properties and materials Symp Series 397. American Chemical Society, Washington, DC, pp 515–22

    Chapter  Google Scholar 

  128. Glasser WG, Jain RK (1993) Lignin derivatives. I Alkanoates Holzforschung 47:225–33

    Article  CAS  Google Scholar 

  129. Kelley SS, Glasser WG, Ward TC (1988) Engineering plastics from lignin. XIV Characterization of chain-extended hydroxypropyl lignins. J Wood Chem Technol 8:341–59

    Article  CAS  Google Scholar 

  130. Rials TG, Glasser WG (1990) Multiphase materials with lignin: 5 Effect of lignin structure on hydroxypropyl cellulose blend morphology. Polymer 31:1333–1338

    Article  CAS  Google Scholar 

  131. Ciemniecki SL, Glasser WG (1989) Polymer blends with hydroxypropyl lignin. In: Glasser WG, Sarkanen S (eds) Lignin properties and materials. Symposium Series 397. American Chemical Society, Washington, DC, pp 452–63

    Google Scholar 

  132. Rials TG, Glasser WG (1989) Multiphase materials with lignin. IV Blends of hydroxypropyl cellulose with lignin. J Appl Polym Sci 37:2399–415

    Article  CAS  Google Scholar 

  133. Demaret V, Glasser WG (1989) Multiphase materials with lignin. 7 Block copolymers from hydroxypropyl lignin and cellulose triacetate. Polymer 30:570–575

    Article  CAS  Google Scholar 

  134. Kelley SS, Ward TC, Glasser WG (1990) Multiphase materials with lignin. VIII. Interpenetrating polymer networks from polyurethanes and poly(methyl methacrylate). J Appl Polym Sci 41:2813–28

    Article  CAS  Google Scholar 

  135. Hofmann K, Glasser WG (1993) Engineering plastics from lignin. 21. Synthesis and properties of epoxidized lignin-poly(propylene oxide) copolymers. J Wood Chem Technol 13:73–95

    Article  CAS  Google Scholar 

  136. Hofmann K, Glasser WG (1993) Engineering plastics from lignin. 22. Cure of lignin-based epoxy resins. J Adhes 40:229–241

    Article  CAS  Google Scholar 

  137. Takemura A, Glasser WG (1993) Multiphase materials with lignin. 10. A novel graft copolymer with hydroxyalkyl lignin. Mokuzai Gakkaishi 39:198–205

    CAS  Google Scholar 

  138. De Oliveira W, Glasser WG (1993) Comparison of some molecular characteristics of star-block copolymers with lignin. In: Kennedy JF, Phillips GO, Williams PA (eds) Cell Chem Biochem Mater Aspects. Horwood, London, UK, pp 263–271

    Google Scholar 

  139. De Oliveira W, Glasser WG (1994) Multiphase materials with lignin. 11. Starlike copolymers with caprolactone. Macromolecules 27:5–11

    Article  Google Scholar 

  140. De Oliveira W, Glasser WG (1994) Multiphase materials with lignin 13. Block copolymers with cellulose propionate. Polymer 35:1977–1985

    Google Scholar 

  141. De Oliveira W, Glasser WG (1994) Multiphase materials with lignin. 14. Star-like copolymers with styrene. J Wood Chem Technol 14:119–126

    Article  Google Scholar 

  142. De Oliveira W, Glasser WG (1994) Multiphase materials with lignin 7 Blends of poly(vinyl chloride) with lignin-caprolactone copolymers. J Appl Polym Sci 51:563–571

    Article  Google Scholar 

  143. Toffey A, Glasser WG (1997) Cure characterization of polyurethanes with lignin and cellulose derivatives. Holzforschung 51:71–78

    Article  CAS  Google Scholar 

  144. Gandini A, Naceur BM, Guo ZX, Montanari S (2002) Lignins as macromonomers for polyesters and polyurethanes. In: Hu TQ (eds) Chemical modification, properties, and usage of lignin. Academic/Plenum, NY, pp 57–80

    Chapter  Google Scholar 

  145. Mikame K, Funaoka M (2006) Polymer structure of lignophenol II-comparison of molecular morphology of lignophenol and conventional lignins. Polym J 38:592–596

    Article  CAS  Google Scholar 

  146. Kimura T, Terada M, Tamura H, Funaoka M (2007) Relationships between the molecular structure of lignins and the performance of the negative plates of lead-acid batteries. Trans Mat Res Soc Jap 32:1091–1094

    CAS  Google Scholar 

  147. Khunathai K, Parajuli D, Adhikari CR, Kawakita H, Ohto K, Inoue K, Funaoka M (2007) Selective recovery of precious metals by a novel lignin gel. J Ion Exch 8:498–501

    Article  Google Scholar 

  148. Parajuli D, Kawakita H, Inoue K, Funaoka M (2006) Recovery of gold (III), palladium(II), and platinum(IV) by aminated lignin derivatives. Indust Eng Chem Res 45:6405–6412

    Article  CAS  Google Scholar 

  149. Parajuli D, Inoue K, Ohto K, Oshima T, Murota A, Funaoka M, Makino K (2005) Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel. React Func Polym 62:129–139

    Article  CAS  Google Scholar 

  150. Aoyagi M, Funaoka M (2004) A new polymeric photosensitizer for dye-sensitized solar cell with porous TiO2 from forest carbon resources. J Photochem Photobiol A Chem 164:53–60

    Article  CAS  Google Scholar 

  151. Saunders J, Fisch K (1962) Polyurethanes. Chemistry and technology in high polymers XV. Interscience, NY

    Google Scholar 

  152. Planck H, Egbers G, Syré I (1984) Polyurethanes in biomedical engineering. Elsevier, Amsterdam

    Google Scholar 

  153. Saraf VP, Glasser WG, Wilkes G (1985) Engineering plastics from lignin. VII. Structure property relationships of polybutadiene glycol-containing polyurethane networks. J Appl Polym Sci 30:3809–3823

    CAS  Google Scholar 

  154. Nakamura K, Morck R, Reimann A, Kringstad KP, Hatakeyama H (1991) Mechanical properties of solvolysis lignin derived polyurethanes. Polym Adv Technol 2:41–47

    Article  CAS  Google Scholar 

  155. Nakamura K, Hatakeyama T, Hatakeyama H (1992) Thermal properties of solvolysis lignin-derived polyurethanes. Polym Adv Technol 3:151–155

    Article  CAS  Google Scholar 

  156. Hatakeyema H (2002) Thermal analysis of environmentally compatible polymers containing plant components in the main chain. J Therm Anal Calorim 70:755–955

    Article  Google Scholar 

  157. Hatakeyama T, Matsumoto Y, Asano Y, Hatakeyama (2004) H Glass transition of rigid polyurethane foams derived from sodium lignosulfonate mixed with diethylene, triethylene and polyethylene glycols. Thermochim Acta 416:29–33

    Google Scholar 

  158. Zetterlund P, Hirose S, Hatakeyama T, Hatakeyama H, Albertsson A-C (1997) Thermal and Mechanical properties of polyurethanes derived from mono- and disaccharides. Polym Int 42:1–8

    Article  CAS  Google Scholar 

  159. Hatakeyama H, Nakamura K, Kobashigawa K, Morohoshi N (1995) Biodegradable polyurethanes from plant components. J Macromol Sci A32:743–750

    CAS  Google Scholar 

  160. Hatakeyama H, Hatakeyama T (2005) Environmentally compatible hybrid-type polyurethane foams containing saccharide and lignin components. Macromol Symp 224:219–226

    Article  CAS  Google Scholar 

  161. Hatakeyama H, Kosugi R, Hatakeyama T (2008) Thermal properties of lignin- and molasses-based polyurethane foams. J Therm Anal Calorim 92:419–424

    Article  CAS  Google Scholar 

  162. Albertsson AC, Varma IK (2002) Degradation of aliphatic polyesters. Adv Polym Sci 157: 1–179

    Article  CAS  Google Scholar 

  163. Hatakeyama H, Yoshida T, Hirose S, Hatakeyama T (2000) Thermal and visoelastic properties of cellulose-and lignin-based polycarolactones. In: Kennedy JF, Phillips GO, Williams PA, Lönnberg B (eds) Cellulosic pulps, fibres and materials. Woodhead, Cambridge, pp 327–336

    Chapter  Google Scholar 

  164. Hatakeyama T, Izuta Y, Hirose S, Hatakeyama H (2002) Phase transitions of lignin-based polycaprolactones and their polyurethane derivatives. Polymer 43:177–1182

    Article  Google Scholar 

  165. Hatakeyama H, Tanamachi N, Matsumura H, Hirose S, Hatakeyama T (2005) Biobased polyurethane composite foams with inorganic fillers studied by thermogravimetry. Thermochim Acta 431:155–160

    Article  CAS  Google Scholar 

  166. Hatakeyama H, Nanbo T, Hatakeyama T (2008–1) Thermal and mechanical analysis of lignocellulose-based biocomposites. In: Hu TQ (ed) Characterization of lingocellulosic materials. Blackwell, UK, pp 275–287

    Google Scholar 

  167. Funabashi M, Hirose S, Hatakeyama T, Hatakeyama H (2003) Effect of filler shape on mechanical properties of rigid polyurethane composites containing plant particles. Macromol Symp. 197:231–241

    Article  CAS  Google Scholar 

  168. Hatakeyama H, Nakayachi, Hatakeyama T (2005) Thermal and mechanical properties of polyurethane-based geocomposites derived from lignin and molasses. Comp Part A Appl Sci Manuf 36:698–704

    Article  CAS  Google Scholar 

  169. Yamauchi N, Hirose S, Hatakeyama H (2001) Preparation and thermal properties of polyurethane composite containing fertilizer. In: Kennedy JF, Phillips GO, Williams PA, Hatakeyama H (eds) Recent advances in environmentally compatible polymers. Woodhead, Cambridge, pp 211–216

    Chapter  Google Scholar 

  170. Hatakeyama H, Kamakura D, Kasahara H, Hirose S, Hatakeyama T (2001) Biodegradable polyurethane composite containing coffee bean parchments. In: Kennedy JF, Phillips GO, Williams PA, Hatakeyama H (eds) Recent advances in environmentally compatible polymers. Woodhead Pub, Cambridge, pp 191–196

    Chapter  Google Scholar 

  171. Tanamaich N, Hatakeyama H, Funabashi M, Hatakeyama T (2007) Thermal diffuisitivity of polyurethane composites filled with industrial waste fabrics. Sen-i Gakkaishi 63:182–184

    Article  Google Scholar 

  172. Hirose S, Kobayashi M, Kimura H, Hatakeyama H (2001) Synthesis of lignin-based polyester-epoxy resins. In: Kennedy JF, Phillips GO, Williams PA, Hatakeyama H (eds) Recent advances in environmentally compatible polymers. Woodhead, Cambridge, pp 73–78

    Chapter  Google Scholar 

  173. Hirose S, Hatakeyama T, Hatakeyama H (2003) Synthesis and thermal properties of epoxy resins from ester- carboxylic acid derivative of alcoholysis lignin. Macromol Symp 197: 157–169

    Article  CAS  Google Scholar 

  174. Hirose S, Hatakeyama T, Hatakeyama H (2005) Curing and glass transition of epoxy resins from ester-carboxylic acid derivatives of mono- and disaccharides and alcoholysis lignin. Macromol Symp 224:343–353

    Article  CAS  Google Scholar 

  175. Hirose S, Hatakeyama T, Hatakeyama H (2005) Glass transition and thermal decomposition of epoxy resins from the carboxylic acid system consisting of ester-carboxylic acid derivatives of alcoholysis lignin and ethylene glycol with various eicarboxylic acids. Thermochim Acta 431:76–80

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are grateful to Professor Clive S. Langham for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuko Hatakeyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this chapter

Cite this chapter

Hatakeyama, H., Hatakeyama, T. (2009). Lignin Structure, Properties, and Applications. In: Abe, A., Dusek, K., Kobayashi, S. (eds) Biopolymers. Advances in Polymer Science, vol 232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_12

Download citation

Publish with us

Policies and ethics