Skip to main content

Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 368))

Abstract

In their famous paper, Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of N interacting electrons, albeit limited at the time by certain troubling representability questions. As no practical exact form of the exchange-correlation (xc) energy functional was known, the xc-functional had to be approximated, ideally by a local or semilocal functional. Nowadays, however, the realization that Nature is not always so nearsighted has driven us up Perdew’s Jacob’s ladder to find increasingly nonlocal density/wavefunction hybrid functionals. Time-dependent (TD-) DFT is a younger development which allows DFT concepts to be used to describe the temporal evolution of the density in the presence of a perturbing field. Linear response (LR) theory then allows spectra and other information about excited states to be extracted from TD-DFT. Once again the exact TD-DFT xc-functional must be approximated in practical calculations and this has historically been done using the TD-DFT adiabatic approximation (AA) which is to TD-DFT very similar to what the local density approximation (LDA) is to conventional ground-state DFT. Although some of the recent advances in TD-DFT focus on what can be done within the AA, others explore ways around the AA. After giving an overview of DFT, TD-DFT, and LR-TD-DFT, this chapter focuses on many-body corrections to LR-TD-DFT as one way to build hybrid density-functional/wavefunction methodology for incorporating aspects of nonlocality in time not present in the AA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term ab initio is used here as it is typically used in quantum chemistry. That is, ab initio refers to first-principles Hartree–Fock-based theory, excluding DFT. In contrast, the term ab initio used in the solid state physics literature usually encompasses DFT.

  2. 2.

    “Jacob set out from Beersheba and went on his way towards Harran. He came to a certain place and stopped there for the night, because the sun had set; and, taking one of the stones there, he made it a pillow for his head and lay down to sleep. He dreamt that he saw a ladder, which rested on the ground with its top reaching to heaven, and angels of God were going up and down it.” – The Bible, Genesis 28:10–13

  3. 3.

    This is formalized in mathematical logic theory by Gödel’s incompleteness theorem which basically says that there are always more things that are true than can be proven to be true.

  4. 4.

    Remember that  = 1 in the atomic units used here.

  5. 5.

    This equation is not infrequently called the “Casida equation” in the TD-DFT literature (e.g., as in [24], pp. 145–153.)

  6. 6.

    Sometimes we call this the FORTRAN index convention in reference to the default variable names for integers in that computer language.

  7. 7.

    Technically this is not a metric, because the overlap matrix is symplectic rather than positive definite. However, we will call it a metric as it can be used in much the same way as a true metric.

References

  1. Rowlinson JS (2009) The border between physics and chemistry. Bull Hist Chem 34:1

    CAS  Google Scholar 

  2. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  3. Casida ME (2002) Jacob’s ladder for time-dependent density-functional theory: some rungs on the way to photochemical heaven. In: Hoffmann MRH, Dyall KG (eds) Accurate description of low-lying molecular states and potential energy surfaces. ACS, Washington, p 199

    Chapter  Google Scholar 

  4. Doltsinis NL, Marx D (2002) First principles molecular dynamics involving excited states and nonadiabatic transitions. J Theo Comput Chem 1:319

    Article  CAS  Google Scholar 

  5. Cordova F, Doriol LJ, Ipatov A, Casida ME, Filippi C, Vela A (2007) Troubleshooting time-dependent density-functional theory for photochemical applications: oxirane. J Chem Phys 127:164111

    Article  Google Scholar 

  6. Tapavicza E, Tavernelli I, Rothlisberger U, Filippi C, Casida ME (2008) Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry. J Chem Phys 129(12):124108

    Article  Google Scholar 

  7. Casida ME, Natarajan B, Deutsch T (2011) Non-Born-Oppenheimer dynamics and conical intersections. In: Marques M, Maitra N, Noguiera F, Gross EKU, Rubio A (eds) Fundamentals of time-dependent density-functional theory, Lecture Notes in Physics, vol 837. Springer, Berlin, p 279

    Google Scholar 

  8. Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287

    Article  CAS  Google Scholar 

  9. Hohenberg P, Kohn W (1964) Inhomogenous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  10. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  11. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  12. Dreizler DM, Gross EKU (1990) Density functional theory, an approach to the quantum many-body problem. Springer, New York

    Google Scholar 

  13. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York

    Google Scholar 

  14. Perdew JP, Schmidt K (2001) Jacob’s ladder of density functional approximations for the exchange-correlation energy. In: Doren VEV, Alseoy KV, Geerlings P (eds) Density functional theory and its applications to materials. American Institute of Physics, Melville, New York, p 1

    Google Scholar 

  15. Perdew JP, Ruzsinsky A, Constantin LA, Sun J, Csonka GI (2009) Some fundamental issues in ground-state density functional theory: a guide for the perplexed. J Chem Theor Comput 5:902

    Article  CAS  Google Scholar 

  16. Perdew JP, Constantin LA (2007) Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy. Phys Rev B 75:155109

    Article  Google Scholar 

  17. Gill PM (2001) Obituary: density-functional theory (1927–1993). Aust J Chem 54:661

    Article  CAS  Google Scholar 

  18. Becke A (1993) A new mixing of HartreeFock and local density functional theories. J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  19. Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982

    Google Scholar 

  20. Savin A (1995) Beyond the Kohn–Sham determinant. In: Chong DP (ed) Recent advances in density functional theory. World Scientific, Singapore, p 129

    Chapter  Google Scholar 

  21. Baer R, Livshits E, Salzner U (2010) Tuned range-separated hybrids in density functional theory. Annu Rev Phys Chem 61:85

    Article  CAS  Google Scholar 

  22. Marques MAL, Ullrich C, Nogueira F, Rubio A, Gross EKU (eds) (2006) Time-dependent density-functional theory, Lecture Notes in Physics, vol 706. Springer, Berlin

    Google Scholar 

  23. Marques M, Maitra N, Noguiera F, Gross EKU, Rubio A (2011) Fundamentals of time-dependent density-functional theory, Lecture Notes in Physics, vol 837. Springer, Berlin

    Google Scholar 

  24. Ullrich CA (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, Oxford

    Google Scholar 

  25. Runge E, Gross EKU (1984) Density functional theory for time-dependent systems. Phys Rev Lett 52:997

    Article  CAS  Google Scholar 

  26. van Leeuwen R (1999) Mapping from densities to potentials in time-dependent density-functional theory. Phys Rev Lett 82:3863

    Article  Google Scholar 

  27. Maitra NT, Todorov TN, Woodward C, Burke K (2010) Density-potential mapping in time-dependent density-functional theory. Phys Rev A 81:042525

    Google Scholar 

  28. Ruggenthaler M, van Leeuwen R (2011) Global fixed-point proof of time-dependent density-functional theory. Europhys Lett 95:13001

    Article  Google Scholar 

  29. Ruggenthaler M, Glesbertz KJH, Penz M, van Leeuwen R (2012) Density-potential mappings in quantum dynamics. Phys Rev A 85:052504

    Article  Google Scholar 

  30. Ruggenthaler M, Nielsen SEB, van Leeuwen R (2013) Analytic density functionals with initial-state dependence. Phys Rev A 88:022512

    Article  Google Scholar 

  31. Vignale G (2008) Real-time resolution of the causality paradox of time-dependent density-functional theory. Phys Rev A 77(6):1. doi:10.1103/PhysRevA.77.062511

  32. Messud J, Dinh PM, Reinhard P, Suraud E (2011) The generalized SIC-OEP formalism and the generalized SIC-Slater approximation (stationary and time-dependent cases). Ann Phys (Berlin) 523:270

    Article  CAS  Google Scholar 

  33. Rajagopal AK (1996) Time-dependent variational principle and the effective action in density-functional theory and Berrys phase. Phys Rev A 54:3916

    Article  CAS  Google Scholar 

  34. van Leeuwen R (1998) Causality and symmetry in time-dependent density-functional theory. Phys Rev Lett 80:1280

    Article  Google Scholar 

  35. van Leeuwen R (2001) Key concepts in time-dependent density-functional theory. Int J Mod Phys 15:1969

    Article  Google Scholar 

  36. Mukamel S (2005) Generalized time-dependent density-functional-theory response functions for spontaneous density fluctuations and nonlinear response: resolving the causality paradox. Phys Rev A 024503

    Google Scholar 

  37. Mosquera MA (2013) Action formalism in time-dependent density-functional theory. Phys Rev B 88:022515

    Article  Google Scholar 

  38. Casida ME (1995) Time-dependent density-functional response theory for molecules. In: Chong DP (ed) Recent advances in density functional methods, Part I. World Scientific, Singapore, p 155

    Google Scholar 

  39. Casida ME (1996) Time-dependent density functional response theory of molecular systems: theory, computational methods, and functionals. In: Seminario J (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam, p 391

    Google Scholar 

  40. Löwdin PO (1964) Studies in perturbation theory. Part VI. Contraction of secular equations. J Mol Spectr 14:112

    Google Scholar 

  41. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Greens-function approaches. Rev Mod Phys 74:601

    Article  CAS  Google Scholar 

  42. Reining L, Olevano V, Rubio A, Onida G (2002) Excitonic effects in solids described by time-dependent density-functional theory. Phys Rev Lett 88:066404

    Article  Google Scholar 

  43. Sottile F, Olevano V, Reining L (2003) Parameter-free calculation of response functions in time-dependent density-functional theory. Phys Rev Lett 91:056402

    Article  Google Scholar 

  44. Marini A, Sole RD, Rubio A (2003) Bound excitons in time-dependent density-functional theory: optical and energy-loss spectra. Phys Rev Lett 91:256402

    Article  Google Scholar 

  45. Stubner R, Tokatly IV, Pankratov O (2004) Excitonic effects in time-dependent density-functional theory: an analytically solvable model. Phys Rev B 70:245119

    Article  Google Scholar 

  46. von Barth U, Dahlen NE, van Leeuwen R, Stefanucci G (2005) Conserving approximations in time-dependent density functional theory. Phys Rev B 72:235109

    Article  Google Scholar 

  47. Romaniello P, Sangalli D, Berger JA, Sottile F, Molinari LG, Reining L, Onida G (2009) Double excitations in finite systems. J Chem Phys 130:044108

    Article  CAS  Google Scholar 

  48. Oddershede J, Jørgensen P (1977) An order analysis of the particle-hole propagator. J Chem Phys 66:1541

    Article  CAS  Google Scholar 

  49. Nielsen ES, Jørgensen P, Oddershede J (1980) Transition moments and dynamic polarizabilities in a second order polarization propagator approach. J Chem Phys 73:6238

    Article  CAS  Google Scholar 

  50. Nielsen ES, Jørgensen P, Oddershede J (1980) J Chem Phys 75:499; Erratum (1980): J Chem Phys 73:6238

    Google Scholar 

  51. Jørgensen P, Simons J (1981) Second quantization-based methods in quantum chemistry. Academic, New York

    Google Scholar 

  52. Schirmer J (1982) Beyond the random phase approximation: a new approximation scheme for the polarization propagator. Phys Rev A 26:2395

    Article  CAS  Google Scholar 

  53. Trofimov AB, Stelter G, Schirmer J (1999) A consistent third-order propagator method for electronic excitation. J Chem Phys 111:9982

    Article  CAS  Google Scholar 

  54. Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems. McGraw-Hill, New York

    Google Scholar 

  55. Kobe DH (1966) Linked cluster theorem and the Green’s function equations of motion for a many-fermion system. J Math Phys 7(10):1806

    Article  CAS  Google Scholar 

  56. Wilson S (1984) Electron correlation in molecules. Clarendon, Oxford

    Google Scholar 

  57. Sangalli D, Romaniello P, Colò G, Marini A, Onida G (2011) Double excitation in correlated systems: a many-body approach. J Chem Phys 134:034115

    Article  Google Scholar 

  58. Casida ME (2005) Propagator corrections to adiabatic time-dependent density-functional theory linear response theory. J Chem Phys 122:054111

    Article  Google Scholar 

  59. Hirata S, Ivanov S, Bartlett RJ, Grabowski I (2005) Exact-exchange time-dependent density-functional theory for static and dynamic polarizabilities. Phys Rev A 71:032507

    Article  Google Scholar 

  60. Görling A (1998) Exact exchange kernel for time-dependent density-functional theory. Int J Quant Chem 69:265

    Article  Google Scholar 

  61. Maitra NT, Zhang F, Cave RJ, Burke K (2004) Double excitations within time-dependent density functional theory linear response theory. J Chem Phys 120:5932

    Article  CAS  Google Scholar 

  62. Cave RJ, Zhang F, Maitra NT, Burke K (2004) A dressed TDDFT treatment of the 1Ag states of butadiene and hexatriene. Chem Phys Lett 389:39

    Article  CAS  Google Scholar 

  63. Mazur G, Włodarczyk R (2009) Application of the dressed time-dependent density functional theory for the excited states of linear polyenes. J Comput Chem 30:811

    Article  CAS  Google Scholar 

  64. Gritsenko OV, Baerends EJ (2009) Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation. Phys Chem Chem Phys 11:4640

    Article  CAS  Google Scholar 

  65. Huix-Rotllant M, Ipatov A, Rubio A, Casida ME (2011) Assessment of dressed time-dependent density-functional theory for the low-lying valence states of 28 organic chromophores. Chem Phys 391:120

    Article  CAS  Google Scholar 

  66. Schreiber M, Silva-Junior MR, Sauer SPA, Thiel W (2008) Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. J Chem Phys 128:134110

    Article  Google Scholar 

  67. Hsu CP, Hirata S, Head-Gordon M (2001) Excitation energies from time-dependent density functional theory for linear polyene oligomers: butadiene to decapentaene. J Phys Chem A 105:451

    Article  CAS  Google Scholar 

  68. Maitra NT, Tempel DG (2006) Long-range excitations in time-dependent density functional theory. J Chem Phys 125:184111

    Article  Google Scholar 

  69. Huix-Rotllant M (2011) Improved correlation kernels for linear-response time-dependent density-functional theory. Ph.D. thesis, Université de Grenoble

    Google Scholar 

  70. Bokhan D, Schweigert IG, Bartlett RJ (2005) Interconnection between functional derivative and effective operator approaches in ab initio density functional theory. Mol Phys 103:2299

    Article  CAS  Google Scholar 

  71. Bokhan D, Bartlett RJ (2006) Adiabatic ab initio time-dependent density-functional theory employing optimized-effective-potential many-body perturbation theory potentials. Phys Rev A 73:022502

    Article  Google Scholar 

  72. Talman JD, Shadwick WF (1976) Optimized effective atomic central potential. Phys Rev A 14:36

    Article  CAS  Google Scholar 

  73. Talman JD (1989) A program to compute variationally optimized effective atomic potentials. Comp Phys Commun 54:85

    Article  CAS  Google Scholar 

  74. Görling A (1999) New KS method for molecules based on an exchange charge density generating the exact local KS exchange potential. Phys Rev Lett 83:5459

    Article  Google Scholar 

  75. Ivanov S, Hirata S, Bartlett RJ (1999) Exact exchange treatment for molecules in finite-basis-set Kohn–Sham theory. Phys Rev Lett 83:5455

    Article  CAS  Google Scholar 

  76. Casida ME (1995) Generalization of the optimized effective potential model to include electron correlation: a variational derivation of the Sham–Schlüter equation for the exact exchange-correlation potential. Phys Rev A 51:2505

    Article  Google Scholar 

  77. Casida ME (1999) Correlated optimized effective potential treatment of the derivative discontinuity and of the highest occupied Kohn–Sham eigenvalue: a Janak-type theorem for the optimized effective potential method. Phys Rev B 59:4694

    Article  CAS  Google Scholar 

  78. Hirata S, Ivanov S, Grabowski I, Bartlett RJ (2002) Time-dependent density functional theory employing optimized effective potentials. J Chem Phys 116:6468

    Article  CAS  Google Scholar 

  79. Bokhan D, Barlett RJ (2007) Exact-exchange density functional theory for hyperpolarizabilities. J Chem Phys 127:174102

    Article  Google Scholar 

  80. Tokatly IV, Pankratov O (2001) Many-body diagrammatic expansion in a Kohn–Sham basis: implications for time-dependent density functional theory of excited states. Phys Rev Lett 86:2078

    Article  CAS  Google Scholar 

  81. Tokatly IV, Stubner R, Pankratov O (2002) Many-body diagrammatic expansion of the exchange-correlation kernel in time-dependent density-functional theory. Phys Rev B 65:113107

    Article  Google Scholar 

  82. Gonze X, Scheffler M (1999) Exchange and correlation kernels at the resonance frequency: implications for excitation energies in density-functional theory. Phys Rev Lett 82:4416

    Article  CAS  Google Scholar 

  83. Harriman JE (1983) Geometry of density-matrices. 4. The relationship between density-matrices and densities. Phys Rev A 27:632

    Article  Google Scholar 

  84. Harriman JE (1986) Densities, operators, and basis sets. Phys Rev A 34:29

    Article  CAS  Google Scholar 

  85. Heßelmann A, Ipatov A, Görling A (2009) Charge-transfer excitation energies with a time-dependent density-functional method suitable for orbital-dependent exchange-correlation functionals. Phys Rev A 80:012507

    Article  Google Scholar 

  86. Filippi C, Umrigar CJ, Gonze X (1997) Excitation energies from density functional perturbation theory. J Chem Phys 107(23):9994

    Article  CAS  Google Scholar 

  87. Görling A (1996) Density-functional theory for excited states. Phys Rev A 54(5):3912

    Article  Google Scholar 

  88. Li SL, Marenich AV, Xu X, Truhlar DG (2014) Configuration interaction-corrected Tamm-Dancoff approximation: a time-dependent density functional method with the correct dimensionality of conical intersections. J Chem Phys Lett 5:322

    Google Scholar 

  89. Fromager E, Knecht S, Jensen HJA (2013) Multi-configuration time-dependent density-functional theory based upon range separation. J Chem Phys 138:084101

    Article  Google Scholar 

  90. Seidu I, Krykunov M, Ziegler T (2014) The formulation of a constricted variational density functional theory for double excitations. Mol Phys 112:661

    Article  CAS  Google Scholar 

  91. Böhm M, Tatchen J, Krügler D, Kleinermanns K, Nix MGD, LaGreve TA, Zwier TS, Schmitt M (2009) High-resolution and dispersed fluorescence examination of vibronic bands of tryptamine: spectroscopic signatures for L a/L b mixing near a conical intersection. J Phys Chem A 113:2456

    Article  Google Scholar 

  92. Minezawa N, Gordon MS (2009) Optimizing conical intersections by spin-flip density-functional theory: application to ethylene. J Phys Chem A 113:12749

    Article  CAS  Google Scholar 

  93. Huix-Rotllant M, Natarajan B, Ipatov A, Wawire CM, Deutsch T, Casida ME (2010) Assessment of noncollinear spin-flip Tamm-Dancoff approximation time-dependent density-functional theory for the photochemical ring-opening of oxirane. Phys Chem Chem Phys 12:12811

    Article  CAS  Google Scholar 

  94. Rinkevicius Z, Vahtras O, Ågren H (2010) Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 133:114104

    Article  Google Scholar 

  95. Minezawa N, Gordon MS (2011) Photoisomerization of stilbene: a spin-flip density functional theory approach. J Phys Chem A 115:7901

    Article  CAS  Google Scholar 

  96. Casanova D (2012) Avoided crossings, conical intersections, and low-lying excited states with a single reference method: the restricted active space spin-flip configuration interaction approach. J Chem Phys 137:084105

    Article  Google Scholar 

  97. Huix-Rotllant M, Filatov F, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) Assessment of density functional theory for describing the correlation effects on the ground and excited state potential energy surfaces of a retinal chromophore model. J Chem Theory Comput 9:3917

    Article  CAS  Google Scholar 

  98. Minezawa N (2014) Optimizing minimum free-energy crossing points in solution: linear-response free energy/spin-flip density functional theory approach. J Chem Phys 141:164118

    Article  Google Scholar 

  99. Harabuchi Y, Keipert K, Zahariev F, Taketsugu T, Gordon MS (2014) Dynamics simulations with spin-flip time-dependent density functional theory: photoisomerization and photocyclization mechanisms of cis-stilbene in (π, π*) states. J Phys Chem A 118:11987

    Article  CAS  Google Scholar 

  100. Nikiforov A, Gamez JA, Thiel W, Huix-Rotllant M, Filatov M (2014) Assessment of approximate computational methods for conical intersections and branching plane vectors in organic molecules. J Chem Phys 141:124122

    Article  Google Scholar 

  101. Gozem S, Melaccio F, Valentini A, Filatov M, Huix-Rotllant M, Ferré N, Frutos LM, Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M (2014) Shape of multireference, equation-of-motion coupled-cluster, and density functional theory potential energy surfaces at a conical intersection. J Chem Theory Comput 10:3074

    Google Scholar 

  102. Zhang X, Herbert JM (2014) Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory. J Chem Phys 141:064104

    Article  Google Scholar 

  103. Frank I, Damianos K (2007) Restricted open-shell Kohn–Sham theory: simulation. J Chem Phys 126:125105

    Article  Google Scholar 

  104. Friedrichs J, Darnianos K, Frank I (2008) Solving restricted open-shell equations in excited state molecular dynamics simulations. J Chem Phys 347:17

    CAS  Google Scholar 

  105. Filatov M (2015) Spin-restricted ensemble-referenced Kohn–Sham method: basic principles and application to strongly correlated ground and excited states of molecules. Comput Mol Sci 5:146

    Article  CAS  Google Scholar 

  106. Shibuya T, Rose J, McKoy V (1973) Equations-of-motion method including renormalization and double-excitation mixing. J Chem Phys 58:500

    Google Scholar 

  107. Jørgensen P, Oddershede J, Ratner MA (1975) Two-particle, two-hole corrections to a self-consistent time-dependent Hartree-Fock scheme. Chem Phys Lett 32:111

    Article  Google Scholar 

  108. Oddershede J, Sabin JR (1983) The use of modified virtual orbitals in perturbative polarization propagator calculations. J Chem Phys 79:2295

    Google Scholar 

  109. Oddershede J, Jørgensen P, Yeager DL (1984) Polarization propagator methods in atomic and molecular calculations. Comp Phys Rep 2:33

    Article  CAS  Google Scholar 

  110. Oddershede J, Jørgensen P, Beebe NHF (1978) Analysis of excitation energies and transition moments. J Phys B Atom Mol Phys 11:1

    Article  CAS  Google Scholar 

  111. Trofimov AB, Schirmer J (1995) An efficient polarization propagator approach to valence electron excitation spectra. J Phys B At Mol Opt Phys 28:2299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Andrei Ipatov, Mathias Ljungberg, Hemanadhan Myneni, Valerio Olevano, Giovanni Onica, Lucia Reining, Pina Romaniello, Angel Rubio, Davide Sangalli, Jochen Schirmer, and Eric Shirley for useful discussions. M. H. R. would like to acknowledge an Allocation de Recherche from the French Ministry of Education. Over the years, this work has been carried out in the context of several programs: the French Rhône-Alpes Réseau thématique de recherche avancée (RTRA): Nanosciences aux limites de la nanoélectronique, the Rhône-Alpes Associated Node of the European Theoretical Spectroscopy Facility (ETSF), and, most recently, the grant ANR-12-MONU-0014-02 from the French Agence Nationale de la Recherche for the ORGAVOLT project (ORGAnic solar cell VOLTage by numerical computation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Casida .

Editor information

Editors and Affiliations

Appendix: Order Analysis

Appendix: Order Analysis

We have presented the superoperator PP procedure as if we simply manipulated Feynman diagrams. In reality we expanded the matrices using Wick’s theorem with the help of a home-made FORTRAN program. The result was a series of algebraic expressions which were subsequently analyzed by drawing the corresponding Feynman diagrams. This leads to about 200 diagrams which we ultimately resum to give a more compact expression. It is the generation of this expression that we now wish to discuss.

Let us analyze this expression for the PP according to the order of excitation operator. Following Casida [58], we partition the space as

$$ -{\Pi}_{sr,qp}\left(\omega \right)=\left(\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right) \left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_{2+}^{\dagger}\right)\right){\boldsymbol{\varGamma}}^{-1}\left(\omega \right)\left(\begin{array}{c}\hfill \left({\mathbf{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)\hfill \\ {}\hfill \left({\mathbf{T}}_{2+}^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)\hfill \end{array}\right) , $$
(143)

where \( {\mathbf{T}}_{2+}^{\dagger } \) corresponds to the operator space of two-electron and higher excitations and

$$ {\boldsymbol{\varGamma}}^{-1}\left(\omega \right)={\left[\begin{array}{cc}\hfill {\boldsymbol{\varGamma}}_{1,1}\left(\omega \right)\hfill & \hfill {\boldsymbol{\varGamma}}_{1,2+}\hfill \\ {}\hfill {\boldsymbol{\varGamma}}_{2+,1}\hfill & \hfill {\boldsymbol{\varGamma}}_{2+,2+}\left(\omega \right)\hfill \end{array}\right]}^{-1} , $$
(144)

has been blocked:

$$ {\boldsymbol{\varGamma}}_{i,j}\left(\omega \right)=\left({\mathbf{T}}_i^{\dagger}\left|\omega \overset{\smile }{1}+\overset{\smile }{H}\right|{\mathbf{T}}_j^{\dagger}\right) . $$
(145)

Using the well-known expression for the inverse of a two-by-two block matrix allows us to transform (143) into

$$ \begin{array}{l}-{\Pi}_{sr,qp}\left(\omega \right)=\left[\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_1^{\dagger}\right)-\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_{2+}^{\dagger}\right){\boldsymbol{\varGamma}}_{2+,2+}^{-1}\left(\omega \right){\boldsymbol{\varGamma}}_{2+,1}\right]\\ {} \times {\boldsymbol{P}}^{-1}\left(\omega \right)\left[\left({\boldsymbol{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)-{\boldsymbol{\varGamma}}_{1,2+}{\boldsymbol{\varGamma}}_{2+,2+}^{-1}\left(\omega \right)\left({\boldsymbol{T}}_{2+}^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)\right]+\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_{2+}^{\dagger}\right){\boldsymbol{\varGamma}}_{2+,2+}^{-1}\left(\omega \right)\left({\boldsymbol{T}}_{2+}^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right) ,\end{array} $$
(146)

where

$$ \boldsymbol{P}\left(\omega \right)={\boldsymbol{\varGamma}}_{1,1}\left(\omega \right)-{\boldsymbol{\varGamma}}_{1,2+}{\boldsymbol{\varGamma}}_{2+,2+}^{-1}\left(\omega \right){\boldsymbol{\varGamma}}_{2+,1} . $$
(147)

Although (146) is somewhat complicated, it turns out that P(ω) plays much the same role in the smaller T 1 space that Γ(ω) plays in the full T space. To see how this comes about, it is necessary to introduce the concept of order in the fluctuation operator – see (67) – and in M xc – see (69). We can now perform an order-by-order expansion of (146). Through second order only the T 2 part of \( {\boldsymbol{T}}_{2+}^{\dagger } \) contributes, so we need not consider higher than double excitation operators. However, we make some additional approximations. In particular, we follow the usual practice and drop the last term in (146) because it contributes only at second order and appears to be small when calculating excitation energies and transitions moments using the Hartree–Fock approximation as zero-order [52, 106109]. For response functions such as dynamic polarizabilities, their inclusion is more critical, improving the agreement with experiments [49]. We also have no need to consider the second term in

$$ \left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)-\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_{2+}^{\dagger}\right){\boldsymbol{\varGamma}}_{2+,2+}^{-1}\left(\omega \right){\boldsymbol{\varGamma}}_{2+,1} . $$
(148)

This means that for the purposes of this chapter we can treat the PP in the present work as given by

$$ -{\Pi}_{sr,qp}\left(\omega \right)=\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_1^{\dagger}\right){\mathbf{P}}^{-1}\left(\omega \right)\left({\boldsymbol{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right) . $$
(149)

Comparing with (82) substantiates our earlier claim that P(ω) plays the same role in the T 1 space that Γ(ω) plays over the full T space.

1.1 First-Order Exchange-Correlation Kernel

We now turn to the first-order exchange-correlation kernel. Our main motivation here is to verify that we obtain the same terms as in exact exchange (EXX) calculations when we evaluate \( \boldsymbol{\varPi} -{\boldsymbol{\varPi}}_s \) [59, 60]. Because our approach is in some ways more general than previous approaches to the EXX kernel, this section may also provide some new insight into the meaning of the EXX equations.

Because we are limited to first order, only zero- and first-order wavefunction terms need be considered. This implies that all the contributions from the \( {\mathbf{T}}_{2+}^{\dagger } \) space (the space of double- and higher-excitations) are zero and substantiates our claim that (149) is exact to first-order. An order-by-order expansion gives

$$ \begin{array}{l}-{\Pi}_{sr,qp}^{\left(0+1\right)}\left(\omega \right)={\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_1^{\dagger}\right)}^{(1)}{\boldsymbol{P}}^{(0),-1}\left(\omega \right){\left({\boldsymbol{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(0)}+{\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_1^{\dagger}\right)}^{(0)}{\boldsymbol{P}}^{(0),-1}\left(\omega \right){\left({\boldsymbol{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(1)}\\ {}+{\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_1^{\dagger}\right)}^{(0)}{\boldsymbol{P}}^{(1),-1}\left(\omega \right){\left({\boldsymbol{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(0)}-{\Pi}_{sr,qp}^s\left(\omega \right),\end{array} $$
(150)

where

$$ -{\Pi}_{sr,qp}^s\left(\omega \right)={\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\boldsymbol{T}}_1^{\dagger}\right)}^{(0)}{\left({\boldsymbol{T}}_1^{\dagger}\left|\omega \overset{\smile }{1}+{\overset{\smile }{h}}_{KS}\right|{\boldsymbol{T}}_1^{\dagger}\right)}^{(0),-1}{\left({\boldsymbol{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(0)} . $$
(151)

The evaluation of each of first-order block is straightforward using the basic definitions and Wick’s theorem.

Let us first consider the P parts. The zeroth-order contribution is

$$ {P}_{kc,ia}^{(0)}\left(\omega \right)=\left(\omega -{\varepsilon}_{i,a}\right){\delta}_{ik}{\delta}_{ac} $$
(152)
$$ {P}_{ck,ia}^{(0)}\left(\omega \right)=0 , $$
(153)

and the first-order contribution gives

$$ {P}_{kc,ia}^{(1)}=\left( ai\left|\right|kc\right)+{M}_{ac}{\delta}_{ik}-{M}_{ik}{\delta}_{ac} $$
(154)
$$ {P}_{ck,ia}^{(1)}=\left(ci\left|\right|ak\right) . $$
(155)

(It should be noted that P kc,ia is part of the A block, whereas P ck,ia is part of the B block.) The sum of \( {P}^{(0)}+{P}^{(1)} \) gives the exact pole structure up to first-order in the SOPPA approach.

The zero-order contribution,

$$ {\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(0)}=\left({\mathbf{T}}_1^{\dagger}\Big|{\mathbf{T}}_1^{\dagger}\right) , $$
(156)

and the first-order contributions are given by

$$ {\left[\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)\right]}_{kc,ji}^{(1)}=-\frac{M_{jc}}{\varepsilon_{j,c}}{\delta}_{ik} $$
(157)
$$ {\left[\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)\right]}_{ck,ji}^{(1)}= \frac{M_{ic}}{\varepsilon_{i,c}}{\delta}_{kj} $$
(158)
$$ {\left[\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)\right]}_{kc, ba}^{(1)}= \frac{M_{ka}}{\varepsilon_{k,a}}{\delta}_{bc} $$
(159)
$$ {\left[\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)\right]}_{ck, ba}^{(1)}=-\frac{M_{kb}}{\varepsilon_{k,b}}{\delta}_{ca} . $$
(160)

The PP Π(ω) is now easily constructed by simple matrix multiplication according to (150). Applying the first approximation from Sect. 5 and expanding \( {\boldsymbol{\varPi}}_s\left(\omega \right)-\boldsymbol{\varPi} \left(\omega \right) \) through first order allows us to recover Görling’s TD-EXX kernel [30]. The most convenient way to do this is to expand \( {\boldsymbol{P}}^{(1),-1} \) using

$$ \begin{array}{l}{\left({\mathbf{T}}_1^{\dagger}\left|\omega \overset{\smile }{1}+\overset{\smile }{H}\right|{\mathbf{T}}_1^{\dagger}\right)}^{-1}\approx {\left({\mathbf{T}}_1^{\dagger}\left|\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)}\right|{\mathbf{T}}_1^{\dagger}\right)}^{-1}\\ {} +{\left({\mathbf{T}}_1^{\dagger}\left|\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)}\right|{\mathbf{T}}_1^{\dagger}\right)}^{-1}\left({\mathbf{T}}_1^{\dagger}\left|{\overset{\smile }{H}}^{(1)}\right|{\mathbf{T}}_1^{\dagger}\right){\left({\mathbf{T}}_1^{\dagger}\left|\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)}\right|{\mathbf{T}}_1^{\dagger}\right)}^{-1} .\end{array} $$
(161)

The result is represented diagrammatically in Fig. 7. The corresponding expressions agree perfectly with the expanded expressions of the TD-EXX kernel obtained by Hirata et al. [59] which are equivalent to the more condensed form given by Görling [60]. The diagrammatic treatment makes clear the connection with the BSE approach. There are in fact just three time-unordered diagrams, shown in Fig. 11, whose various time orderings generate the diagrams in Fig. 7. However the “hanging parts” above and below the horizontal dotted lines now have the physical interpretation of initial and final state wave function correlation. Had we applied the second approximation of Sect. 5, then only diagrams in Fig. 7a–f would have survived.

Use of the Gonze–Scheffler relation (see further Sect. 5) then leads to

$$ \begin{array}{l}\omega ={\varepsilon}_{a,i}^{KS}+{f}_{\mathrm{xc}}\left({\varepsilon}_{a,i}^{KS}\right)\\ {} ={\varepsilon}_{a,i}^{KS}+\left\langle a\left|{\widehat{M}}_{\mathrm{xc}}\right|a\right\rangle -\left\langle i\left|{\widehat{M}}_{\mathrm{xc}}\right|i\right\rangle +\left( ai\left|\right|ia\right)\\ {} ={\varepsilon}_{a,i}^{HF}+\left( ai\left|\right|ia\right) ,\end{array} $$
(162)

which is exactly the configuration interaction singles (CIS, i.e., TDHF Tamm–Dancoff approximation) expression evaluated using Kohn–Sham orbitals. This agrees with a previous exact result obtained using Görling–Levy perturbation theory [82, 86, 87].

1.2 Second-Order Exchange-Correlation Kernel

Having verified some known results, let us go on to do the MBPT necessary to obtain the pole structure of the xc-kernel through second order in the second approximation. That is, we need to evaluate \( {\boldsymbol{\varPi}}_s^{-1}\left(\omega \right)-{\boldsymbol{\varPi}}^{-1}\left(\omega \right) \) through second order in such a way that its pole structure is evident. The SOPPA/ADC strategy for this is to make a diagrammatic \( {\boldsymbol{\varPi}}_s\left(\omega \right)-\boldsymbol{\varPi} \left(\omega \right) \) expansion of this quantity and then resum the expansion in an order-consistent way having the form

$$ {\left[{\boldsymbol{\varPi}}_s\left(\omega \right)-\boldsymbol{\varPi} \left(\omega \right)\right]}_{rs,qp}^{\left(0+1+\dots +n\right)}={\displaystyle \sum_{k=0}^n}{\displaystyle \sum_{i=0}^k}{\displaystyle \sum_{j=0}^{k-i}}{\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(i)}{\mathbf{P}}^{(j),-1}\left(\omega \right){\left({\mathbf{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{\left(k-i-j\right)} , $$

when the Born approximation is applied to the P(ω) in the same way as in Sect. 5. The number of diagrams contributing to this expansion is large and, for the sake of simplicity, we only give the resumed expressions for each block. Evidently, after the calculation of each block there is an additional step matrix inversion in order to apply the second approximation to the xc-kernel.

It should be emphasized that although the treatment below may seem simple, application of Wick’s theorem is complicated and has been carried out using an in-house FORTRAN program written specifically for the purpose. The result before resummation is roughly 200 diagrams, which have been included as supplementary material.

It can be shown that the operator space may be truncated without loss of generality in a second-order treatment to only one- and two-electron excitation operators [52]. The wavefunction may also be truncated at second order. This truncation breaks the orthonormality of the T 1 space:

$$ \left({\mathbf{T}}_1^{\dagger}\Big|{\mathbf{T}}_1^{\dagger}\right)\approx {\left({\mathbf{T}}_1^{\dagger}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(0)}+{\left({\mathbf{T}}_1^{\dagger}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(2)}\ne \left(\begin{array}{cc}\hfill 1\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -1\hfill \end{array}\right) . $$
(163)

This complication is dealt with by orthonormalizing our operator space. The new operator set expressed in terms of the original set contains only second-order corrections:

$$ \begin{array}{l}{\left[{\widehat{a}}^{\dagger}\widehat{i}\right]}^{(2)}={\displaystyle \sum_b}\left(\frac{1}{4}{\displaystyle \sum_{kld}}\frac{\left(kd\left|\right| lb\right)\left(dk\left|\right| al\right)}{\varepsilon_{kl,bd}{\varepsilon}_{kl,da}}+{\displaystyle \sum_k}\frac{M_{kb}{M}_{ka}}{\varepsilon_{k,b}{\varepsilon}_{k,a}}\right){\widehat{b}}^{\dagger}\widehat{i}\\ {} +{\displaystyle \sum_j}\left(\frac{1}{4}{\displaystyle \sum_{mcd}}\frac{\left(md\left|\right|jc\right)\left(ci\left|\right| dm\right)}{\varepsilon_{mj, cd}{\varepsilon}_{im, cd}}+{\displaystyle \sum_d}\frac{M_{jd}{M}_{di}}{\varepsilon_{j,d}{\varepsilon}_{i,d}}\right){\widehat{a}}^{\dagger}\widehat{j} .\end{array} $$
(164)

(It should be noted that we have used the linked-cluster theorem to eliminate contributions from disconnected diagrams. For a proof for the EOM of the one- and two-particle the Green’s function, see [55].)

We may now proceed to calculate

$$ \begin{array}{l}-{\Pi}_{sr,qp}^{(2)}\left(\omega \right)={\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(1)}{\mathbf{P}}^{(1),-1}\left(\omega \right){\left({\mathbf{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(0)}\\ {} +{\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(0)}{\mathbf{P}}^{(1),-1}\left(\omega \right){\left({\mathbf{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(1)}\\ {} +{\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(1)}{\mathbf{P}}^{(0),-1}\left(\omega \right){\left({\mathbf{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(1)}\\ {} +{\left({\widehat{p}}^{\dagger}\widehat{q}\Big|{\mathbf{T}}_1^{\dagger}\right)}^{(0)}{\mathbf{P}}^{(2),-1}\left(\omega \right){\left({\mathbf{T}}_1^{\dagger}\Big|{\widehat{r}}^{\dagger}\widehat{s}\right)}^{(0)} .\end{array} $$
(165)

The only new contributions which arise at this level are from the block P (2), which is given by

$$ {\mathbf{P}}^{(2)}={\boldsymbol{\varGamma}}_{1,1}^{(2)}-{\boldsymbol{\varGamma}}_{1,2}^{(1)}{\boldsymbol{\varGamma}}_{2,2}^{(0),-1}\left(\omega \right){\boldsymbol{\varGamma}}_{2,1}^{(1)} . $$
(166)

(We are anticipating the ω-dependence of the various Γ-blocks which are derived below.) Because the block Γ (2)1,1 is affected by the orthonormalization procedure, it may be useful to provide a few more details. Expanding order-by-order,

$$ \begin{array}{l}{\boldsymbol{\varGamma}}_{1,1}^{(2)}=\left\langle {0}^{(1)}\left|\left[{\mathbf{T}}_1^{\dagger },\left[\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)},{\mathbf{T}}_1^{\dagger}\right]\right]\right|{0}^{(1)}\right\rangle \\ {} +\left\langle {0}^{(0)}\left|\left[{\mathbf{T}}_1^{\dagger },\left[\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)},{\mathbf{T}}_1^{\dagger}\right]\right]\right|{0}^{(2)}\right\rangle \\ {} +\left\langle {0}^{(2)}\left|\left[{\mathbf{T}}_1^{\dagger },\left[\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)},{\mathbf{T}}_1^{\dagger}\right]\right]\right|{0}^{(0)}\right\rangle \\ {} +\left\langle {0}^{(0)}\left|\left[{\mathbf{T}}_1^{\dagger (2)},\left[\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)},{\mathbf{T}}_1^{\dagger}\right]\right]\right|{0}^{(0)}\right\rangle \\ {} +\left\langle {0}^{(0)}\left|\left[{\mathbf{T}}_1^{\dagger },\left[\omega \overset{\smile }{1}+{\overset{\smile }{H}}^{(0)},{\mathbf{T}}_1^{\dagger (2)}\right]\right]\right|{0}^{(0)}\right\rangle \\ {} +\left\langle {0}^{(1)}\right|\left[{\mathbf{T}}_1^{\dagger },\left[{\widehat{H}}^{(1)},{\mathbf{T}}_1^{\dagger}\right]\right|{0}^{(0)}\Big\rangle \\ {} +\left\langle {0}^{(0)}\right|\left[{\mathbf{T}}_1^{\dagger },\left[{\widehat{H}}^{(1)},{\mathbf{T}}_1^{\dagger}\right]\right|{0}^{(1)}\Big\rangle ,\end{array} $$
(167)

where T † (2)1 is the vector of second-order operators defined in (164). It is easily shown that the first term cancels with the contributions coming from the second-order operators, and that the contributions from second-order wave function are exactly zero. Hence, that block is simply

$$ {\boldsymbol{\varGamma}}_{1,1}^{(2)}=\left\langle {0}^{(1)}\right|\left[{\mathbf{T}}_1^{\dagger },\left[{\widehat{H}}^{(1)},{\mathbf{T}}_1^{\dagger}\right]\right|{0}^{(0)}\left\rangle +\right\langle {0}^{(0)}\left|\right[{\mathbf{T}}_1^{\dagger },\left[{\widehat{H}}^{(1)},{\mathbf{T}}_1^{\dagger}\right]\left|{0}^{(1)}\right\rangle, $$
(168)

which makes it frequency-independent. Its calculation gives

$$ {\left[{\varGamma}_{1,1}^{(2)}\right]}_{kc,ia}={\delta}_{ac}{\displaystyle \sum_d}\frac{M_{kd}{M}_{di}}{\varepsilon_{i,d}}+{\delta}_{ik}{\displaystyle \sum_l}\frac{M_{la}{M}_{lc}}{\varepsilon_{l,a}}+\frac{\delta_{ac}}{2}{\displaystyle \sum_{lde}}\frac{\left(le\left|\right|kd\right)\left( dl\left|\right|ei\right)}{\varepsilon_{im,de}}-\frac{\delta_{ik}}{2}{\displaystyle \sum_{lmd}}\frac{\left(ld\left|\right|mc\right)\left( dl\left|\right|ma\right)}{\varepsilon_{lm, ad}}, $$
(169)
$$ \begin{array}{l}{\left[{\varGamma}_{1,1}^{(2)}\right]}_{ck,ia}=\frac{M_{ak}{M}_{id}}{\varepsilon_{i,d}}+\frac{M_{ci}{M}_{ka}}{\varepsilon_{k,a}}\\ {} +2{\displaystyle \sum_d}\frac{M_{dk}\left( ad\left|\right|ci\right)}{\varepsilon_{k,d}}+2{\displaystyle \sum_l}\frac{M_{lc}\left(lk\left|\right| ai\right)}{\varepsilon_{l,c}}\\ {} -{\displaystyle \sum_{md}}\frac{\left(ce\left|\right| ad\right)\left(di\left|\right|em\right)}{\varepsilon_{im,de}}-{\displaystyle \sum_{me}}\frac{\left(ce\left|\right|mi\right)\left(ak\left|\right| me\right)}{\varepsilon_{km,ae}}\\ {} -\frac{1}{2}{\displaystyle \sum_{de}}\frac{\left(ce\left|\right| ad\right)\left(dk\left|\right|ei\right)}{\varepsilon_{ik,de}}-\frac{1}{2}{\displaystyle \sum_{ml}}\frac{\left(ik\left|\right| ml\right)\left(ac\left|\right| ml\right)}{\varepsilon_{lm,ac}} .\end{array} $$
(170)

The block Γ 1,2 and its adjoint is of at least first order because the space is orthonormal. For that reason, it is not affected by the orthonormalization at this level of approximation. Its calculation gives

$$ \begin{array}{l}{\left[{\varGamma}_{2,1}^{(2)}\right]}_{kc, jbia}=-{\delta}_{ik}\left(bc\left|\right|aj\right)+{\delta}_{jk}\left(bc\left|\right| ai\right)-{\delta}_{bc}\left( ai\left|\right|kj\right)+{\delta}_{ac}\left( bi\left|\right|kj\right)\\ {}{\left[{\varGamma}_{2,1}^{(2)}\right]}_{ck, jbia}=0 .\end{array} $$
(171)

Finally, the block Γ 2,2(ω) gives

$$ \begin{array}{l}{\left[{\varGamma}_{2,2}^{(2)}\left(\omega \right)\right]}_{ldkc, jbia}=\left(\omega -{\varepsilon}_{ij, ab}\right){\delta}_{jl}{\delta}_{ik}{\delta}_{ca}{\delta}_{db}\\ {}{\left[{\varGamma}_{2,2}^{(2)}\left(\omega \right)\right]}_{ckdl, jbia}=0 \end{array} $$
(172)

It should be noted that double excitations are treated only to zeroth-order in a second-order approach. To obtain a consistent theory with first-order corrections to double excitations, one should go at least to third order. This however becomes computationally quite heavy.

It is interesting to speculate what would happen if we were to include the first-order doubles correction within the present second-order theory. There are, in fact, indications that this can lead to improved agreement between calculated and experimental double excitations, though the quality of the single excitations is simultaneously decreased because of an imbalanced treatment [110, 111].

We can now construct the PP necessary to construct the second approximation of the xc-kernel (142) according to (149). Because the localizers of both left- and right-sides are constructed from the noninteracting KS PP, we are only concerned with ph and hp contributions. This means that the blocks involving pp or hh indices, corresponding to density shift operators, can be ignored at this level of approximation. This simplifies the construction of P(ω) in (149), which, up to second order, gives

$$ {\boldsymbol{\varPi}}^{\left(0+1+2\right),-1}\left(\omega \right)={\left({\boldsymbol{T}}_1^{\dagger}\Big|{\boldsymbol{T}}_1^{\dagger}\right)}^{-1}{\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right){\left({\boldsymbol{T}}_1^{\dagger}\Big|{\boldsymbol{T}}_1^{\dagger}\right)}^{-1} . $$
(173)

Separating ph and hp contributions, the PP takes the form of a 2 × 2 block-matrix in the same spirit as the LR-TD-DFT formulation of Casida,

$$ \begin{array}{l}{\boldsymbol{\varPi}}^{\left(0+1+2\right),-1}\left(\omega \right)\\ {} =\left(\begin{array}{cc}\hfill \mathbf{1}\hfill & \hfill \mathbf{0}\hfill \\ {}\hfill \mathbf{0}\hfill & \hfill -\mathbf{1}\hfill \\ {}\hfill \hfill & \hfill \hfill \end{array}\right)\left(\begin{array}{cc}\hfill {\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)\hfill & \hfill {\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)\hfill \\ {}\hfill {\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)\hfill & \hfill {\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)\hfill \\ {}\hfill \hfill & \hfill \hfill \end{array}\right)\left(\begin{array}{cc}\hfill \mathbf{1}\hfill & \hfill \mathbf{0}\hfill \\ {}\hfill \mathbf{0}\hfill & \hfill -\mathbf{1}\hfill \\ {}\hfill \hfill & \hfill \hfill \end{array}\right)\\ {} =\left(\begin{array}{rr}\hfill {\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)& \hfill -{\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)\\ {}\hfill -{\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)& \hfill {\boldsymbol{P}}^{\left(0+1+2\right)}\left(\omega \right)\\ {}\hfill & \hfill \end{array}\right) .\end{array} $$
(174)

It follows that

$$ {\boldsymbol{\varPi}}_s^{-1}\left(\omega \right)-{\boldsymbol{\varPi}}^{\left(0+1+2\right),-1}\left(\omega \right)=\left(\begin{array}{rr}\hfill {\boldsymbol{P}}^{\left(1+2\right)}\left(\omega \right)& \hfill -{\boldsymbol{\varGamma}}_{1,1}^{\left(1+2\right)}\\ {}\hfill -{\boldsymbol{\varGamma}}_{1,1}^{\left(1+2\right)}& \hfill {\boldsymbol{P}}^{\left(1+2\right)}\left(\omega \right)\\ {}\hfill & \hfill \end{array}\right) . $$
(175)

Note that the off-diagonal (ph,hp)- and (hp,ph)-blocks are frequency-independent and that the diagonal blocks are given by (166). Ignoring localization for the moment, we may now cast the present Kohn–Sham based second-order polarization propagator approximation (SOPPA/KS) into the familiar form of (27) with

$$ \begin{array}{l}{A}_{ia,jb}\left(\omega \right)={\delta}_{i,j}{\delta}_{a,b}{\varepsilon}_{a,i}+{P}_{ia,jb}^{\left(1+2\right)}\left(\omega \right)\\ {}{B}_{ia,bj}\left(\omega \right)=-{\left({\varGamma}_{1,1}^{\left(1+2\right)}\right)}_{ia,bj} .\end{array} $$
(176)

Localization – see (142) –complicates these formulae by mixing the \( {\boldsymbol{P}}^{\left(1+2\right)}\left(\omega \right) \) and \( {\boldsymbol{\varGamma}}_{1,1}^{\left(1+2\right)} \) terms,

$$ \begin{array}{l}{A}_{ia,jb}\left(\omega \right)={\delta}_{i,j}{\delta}_{a,b}\left({\varepsilon}_a-{\varepsilon}_i\right)\\ {} +{\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, hp}\left(\omega \right){\boldsymbol{P}}^{\left(1+2\right)}\left(\omega \right){\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{hp, hp}\left(\omega \right)\right]}_{ia,jb}\\ {} +{\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, ph}\left(\omega \right){\boldsymbol{P}}^{\left(1+2\right)}\left(\omega \right){\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{ph, hp}\left(\omega \right)\right]}_{ia,jb}\\ {} -{\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, ph}\left(\omega \right){\boldsymbol{\varGamma}}^{\left(1+2\right)}{\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{hp, hp}\left(\omega \right)\right]}_{ia,jb}\\ {} -{\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, hp}\left(\omega \right){\boldsymbol{\varGamma}}^{\left(1+2\right)}{\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{ph, hp}\left(\omega \right)\right]}_{ia,jb}\\ {}{B}_{ia,bj}\left(\omega \right)={\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, hp}{\boldsymbol{P}}^{\left(1+2\right)}\left(\omega \right){\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{hp, ph}\right]}_{ia,bj}\\ {} +{\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, ph}{\boldsymbol{P}}^{\left(1+2\right)}\left(\omega \right){\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{ph, ph}\right]}_{ia,bj}\\ {} -{\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, ph}\left(\omega \right){\boldsymbol{\varGamma}}^{\left(1+2\right)}{\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{hp, ph}\left(\omega \right)\right]}_{ia,bj}\\ {} -{\left[{\left({\boldsymbol{\varLambda}}_s\right)}_{hp, hp}\left(\omega \right){\boldsymbol{\varGamma}}^{\left(1+2\right)}{\left({\boldsymbol{\varLambda}}_s^{\dagger}\right)}_{ph, ph}\left(\omega \right)\right]}_{ia,bj} .\end{array} $$
(177)

Of course, this extra complication is unnecessary if all we want to do is to calculate improved excitation energies and transition amplitudes by means of DFT-based many-body perturbation theory. It is only needed when our goal is to study the effect of localization on purely TDDFT quantities such as the xc-kernel and the TDDFT vectors X and Y.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casida, M.E., Huix-Rotllant, M. (2015). Many-Body Perturbation Theory (MBPT) and Time-Dependent Density-Functional Theory (TD-DFT): MBPT Insights About What Is Missing In, and Corrections To, the TD-DFT Adiabatic Approximation. In: Ferré, N., Filatov, M., Huix-Rotllant, M. (eds) Density-Functional Methods for Excited States. Topics in Current Chemistry, vol 368. Springer, Cham. https://doi.org/10.1007/128_2015_632

Download citation

Publish with us

Policies and ethics