Skip to main content

Dynamical Processes in Open Quantum Systems from a TDDFT Perspective: Resonances and Electron Photoemission

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 368))

Abstract

We present a review of different computational methods to describe time-dependent phenomena in open quantum systems and their extension to a density-functional framework. We focus the discussion on electron emission processes in atoms and molecules addressing excited-state lifetimes and dissipative processes. Initially we analyze the concept of an electronic resonance, a central concept in spectroscopy associated with a metastable state from which an electron eventually escapes (electronic lifetime). Resonances play a fundamental role in many time-dependent molecular phenomena but can be rationalized from a time-independent context in terms of scattering states. We introduce the method of complex scaling, which is used to capture resonant states as localized states in the spirit of usual bound-state methods, and work on its extension to static and time-dependent density-functional theory. In a time-dependent setting, complex scaling can be used to describe excitations in the continuum as well as wave packet dynamics leading to electron emission. This process can also be treated by using open boundary conditions which allow time-dependent simulations of emission processes without artificial reflections at the boundaries (i.e., borders of the simulation box). We compare in detail different schemes to implement open boundaries, namely transparent boundaries using Green functions, and absorbing boundaries in the form of complex absorbing potentials and mask functions. The last two are regularly used together with time-dependent density-functional theory to describe the electron emission dynamics of atoms and molecules. Finally, we discuss approaches to the calculation of energy and angle-resolved time-dependent pump–probe photoelectron spectroscopy of molecular systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We mention for completeness that Siegert worked in a spherical system where the represented quantity is really r times the wavefunction; this however happens to yield the same equation as in the one-dimensional case.

  2. 2.

    The above discussion is, of course, very informal. Scrinzi and Piraux have presented a more complete argument on the link between outgoing wavefunctions and square integrability after complex scaling; see Scrinzi and Piraux [31], Appendix A.

  3. 3.

    This would be less of an advantage in Cartesian 3D calculations where a smooth scaling could be applied spherically, whereas the sharp scaling would need a cube to align its boundary with the grid.

  4. 4.

    An analogous approach was first presented by Hellums [64] in a single-particle picture.

  5. 5.

    To simplify notation we avoid explicitly writing out all the coordinates. We also use the same convention used in Kurth et al. [65] where operators are thought of as matrices with continuous indices along the spatial coordinates. We thus omit explicit reference to r and r′ and interpret operator products as integrals.

References

  1. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. doi:10.1103/PhysRev.136.B864, http://link.aps.org/doi/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  2. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000

    Article  CAS  Google Scholar 

  3. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/PhysRev.140.A1133, http://link.aps.org/doi/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  4. Burke K, Car R, Gebauer R (2005) Density functional theory of the electrical conductivity of molecular devices. Phys Rev Lett 94(14):146803

    Article  Google Scholar 

  5. Tempel DG, Aspuru-Guzik A (2011) Relaxation and dephasing in open quantum systems time-dependent density functional theory: properties of exact functionals from an exactly-solvable model system. Chem Phys 391(1):130–142

    Article  CAS  Google Scholar 

  6. Tempel DG, Watson MA, Olivares-Amaya R, Aspuru-Guzik A (2011) Time-dependent density functional theory of open quantum systems in the linear-response regime. J Chem Phys 134(7):074116

    Article  Google Scholar 

  7. Yuen-Zhou J, Rodríguez-Rosario C, Aspuru-Guzik A (2009) Time-dependent current-density functional theory for generalized open quantum systems. Phys Chem Chem Phys 11(22):4509–4522

    Article  CAS  Google Scholar 

  8. Yuen-Zhou J, Tempel DG, Rodríguez-Rosario CA, Aspuru-Guzik A (2010) Time-dependent density functional theory for open quantum systems with unitary propagation. Phys Rev Lett 104(4):043001

    Article  Google Scholar 

  9. Marques MAL, Maitra NT, Nogueira F, Gross EKU, Rubio A (2011) Fundamentals of time-dependent density functional theory. Springer, Berlin

    Google Scholar 

  10. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878

    Article  CAS  Google Scholar 

  11. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401. doi:10.1103/PhysRevB.65.165401

    Article  Google Scholar 

  12. Chen J, Thygesen KS, Jacobsen KW (2012) Ab initio. Phys Rev B 85:155140. doi:10.1103/PhysRevB.85.155140, http://link.aps.org/doi/10.1103/PhysRevB.85.155140

    Article  Google Scholar 

  13. Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW (2009) Localized atomic basis set in the projector augmented wave method. Phys Rev B 80:195112. doi:10.1103/PhysRevB.80.195112, http://link.aps.org/doi/10.1103/PhysRevB.80.195112

    Article  Google Scholar 

  14. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. doi:10.1088/0953-8984/14/11/302, http://iopscience.iop.org/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  15. Newns DM (1969) Self-consistent model of hydrogen chemisorption. Phys Rev 178:1123–1135. doi:10.1103/PhysRev.178.1123, http://link.aps.org/doi/10.1103/PhysRev.178.1123

    Article  CAS  Google Scholar 

  16. Gellene GI (1995) Resonant states of a one-dimensional piecewise constant potential. J Chem Educ 72(11):1015. doi:10.1021/ed072p1015, http://dx.doi.org/10.1021/ed072p1015

    Article  CAS  Google Scholar 

  17. Siegert AJF (1939) On the derivation of the dispersion formula for nuclear reactions. Phys Rev 56:750–752. doi:10.1103/PhysRev.56.750, http://link.aps.org/doi/10.1103/PhysRev.56.750

    Article  CAS  Google Scholar 

  18. Hatano N, Sasada K, Nakamura H, Petrosky T (2008) Some properties of the resonant state in quantum mechanics and its computation. Prog Theor Phys 119(2):187–222. doi:10.1143/PTP.119.187, http://ptp.oxfordjournals.org/content/119/2/187.abstract

    Article  CAS  Google Scholar 

  19. Aguilar J, Combes J (1971) A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun Math Phys 22:269–279. doi:10.1007/BF01877510, http://dx.doi.org/10.1007/BF01877510

    Article  Google Scholar 

  20. Balslev E, Combes JM (1971) Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions. Commun Math Phys 22(4):280–294

    Article  Google Scholar 

  21. Simon B (1973) Resonances in n-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann Math 97:247–274

    Article  Google Scholar 

  22. Simon B (1979) The definition of molecular resonance curves by the method of exterior complex scaling. Phys Lett A 71(2):211–214

    Article  Google Scholar 

  23. Ho Y (1983) The method of complex coordinate rotation and its applications to atomic collision processes. Phys Rep 99(1):1–68. doi:10.1016/0370-1573(83)90112-6, http://www.sciencedirect.com/science/article/pii/0370157383901126

    Article  CAS  Google Scholar 

  24. McCurdy CW, Baertschy M, Rescigno TN (2004) Solving the three-body Coulomb breakup problem using exterior complex scaling. J Phys B At Mol Opt 37(17):R137, http://stacks.iop.org/0953-4075/37/i = 17/a = R01

    Article  CAS  Google Scholar 

  25. Moiseyev N (1998) Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys Rep 302(5–6):212–293. doi:10.1016/S0370-1573(98)00002-7, http://www.sciencedirect.com/science/article/pii/S0370157398000027

    Article  Google Scholar 

  26. Reinhardt WP (1982) Complex coordinates in the theory of atomic and molecular structure and dynamics. Annu Rev Phys Chem 33(1):223–255. doi:10.1146/annurev.pc.33.100182.001255, http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.33.100182.001255

    Article  CAS  Google Scholar 

  27. Simon B (1978) Resonances and complex scaling: a rigorous overview. Int J Quantum Chem 14(4):529–542. doi:10.1002/qua.560140415, http://dx.doi.org/10.1002/qua.560140415

    Article  CAS  Google Scholar 

  28. Cerjan C, Hedges R, Holt C, Reinhardt WP, Scheibner K, Wendoloski JJ (1978) Complex coordinates and the Stark effect. Int J Quantum Chem 14(4):393–418. doi:10.1002/qua.560140408, http://dx.doi.org/10.1002/qua.560140408

    Article  CAS  Google Scholar 

  29. Herbst IW (1979) Dilation analyticity in constant electric field. Commun Math Phys 64(3):279–298. doi:10.1007/BF01221735

    Article  Google Scholar 

  30. Herbst IW, Simon B (1978) Stark effect revisited. Phys Rev Lett 41:67–69. doi:10.1103/PhysRevLett.41.67, http://link.aps.org/doi/10.1103/PhysRevLett.41.67

    Article  CAS  Google Scholar 

  31. Scrinzi A, Piraux B (1998) Two-electron atoms in short intense laser pulses. Phys Rev A 58:1310–1321. doi:10.1103/PhysRevA.58.1310, http://link.aps.org/doi/10.1103/PhysRevA.58.1310

    Article  CAS  Google Scholar 

  32. Junker BR (1983) Complex virial theorem and complex scaling. Phys Rev A 27:2785–2789. doi:10.1103/PhysRevA.27.2785, http://link.aps.org/doi/10.1103/PhysRevA.27.2785

    Article  CAS  Google Scholar 

  33. Moiseyev N, Friedland S, Certain PR (1981) Cusps, θ trajectories, and the complex virial theorem. J Chem Phys 74(8):4739–4740. doi:10.1063/1.441624, http://scitation.aip.org/content/aip/journal/jcp/74/8/10.1063/1.441624

    Article  CAS  Google Scholar 

  34. McCurdy CW (1980) Complex-coordinate calculation of matrix elements of the resolvent of the Born–Oppenheimer Hamiltonian. Phys Rev A 21:464–470. doi:10.1103/PhysRevA.21.464, http://link.aps.org/doi/10.1103/PhysRevA.21.464

    Article  CAS  Google Scholar 

  35. McCurdy CW, Rescigno TN (1978) Extension of the method of complex basis functions to molecular resonances. Phys Rev Lett 41:1364–1368. doi:10.1103/PhysRevLett.41.1364, http://link.aps.org/doi/10.1103/PhysRevLett.41.1364

    Article  CAS  Google Scholar 

  36. Moiseyev N, Corcoran C (1979) Autoionizing states of H2 and H2 using the complex-scaling method. Phys Rev A 20:814–817. doi:10.1103/PhysRevA.20.814, http://link.aps.org/doi/10.1103/PhysRevA.20.814

    Article  CAS  Google Scholar 

  37. Morgan JD, Simon B (1981) The calculation of molecular resonances by complex scaling. J Phys B At Mol Opt 14(5):L167

    Article  CAS  Google Scholar 

  38. Scrinzi A (2010) Infinite-range exterior complex scaling as a perfect absorber in time-dependent problems. Phys Rev A 81(5):053845

    Article  Google Scholar 

  39. Moiseyev N (1999) Derivations of universal exact complex absorption potentials by the generalized complex coordinate method. J Phys B At Mol Opt 31(7):1431–1441

    Article  Google Scholar 

  40. Krylstedt P, Carlsund C, Elander N (1989) On the calculation of electron–atom collision properties using exterior complex dilatated s-matrix expansions. J Phys B At Mol Opt 22(7):1051, http://stacks.iop.org/0953-4075/22/i = 7/a = 014

    Article  CAS  Google Scholar 

  41. Rescigno TN, Baertschy M, Byrum D, McCurdy CW (1997) Making complex scaling work for long-range potentials. Phys Rev A 55:4253–4262. doi:10.1103/PhysRevA.55.4253, http://link.aps.org/doi/10.1103/PhysRevA.55.4253

    Article  CAS  Google Scholar 

  42. Scrinzi A, Elander N (1993) A finite element implementation of exterior complex scaling for the accurate determination of resonance energies. J Chem Phys 98(5):3866–3875. doi:10.1063/1.464014, http://scitation.aip.org/content/aip/journal/jcp/98/5/10.1063/1.464014

    Article  CAS  Google Scholar 

  43. Simons J (1980) The complex coordinate rotation method and exterior scaling: a simple example. Int J Quantum Chem 18(S14):113–121. doi:10.1002/qua.560180814, http://dx.doi.org/10.1002/qua.560180814

    Article  Google Scholar 

  44. Kar S, Ho YK (2009) Isotope shift for the 1De autodetaching resonance in H and D. J Phys B At Mol Opt 42(5):055001, http://stacks.iop.org/0953-4075/42/i = 5/a = 055001

    Article  Google Scholar 

  45. Scrinzi A, Geissler M, Brabec T (1999) Ionization above the Coulomb barrier. Phys Rev Lett 83:706–709. doi:10.1103/PhysRevLett.83.706, http://link.aps.org/doi/10.1103/PhysRevLett.83.706

    Article  CAS  Google Scholar 

  46. McCurdy CW, Rescigno TN, Davidson ER, Lauderdale JG (1980) Applicability of self-consistent field techniques based on the complex coordinate method to metastable electronic states. J Chem Phys 73(7):3268–3273. doi:10.1063/1.440522, http://scitation.aip.org/content/aip/journal/jcp/73/7/10.1063/1.440522

    Article  CAS  Google Scholar 

  47. Samanta K, Yeager DL (2008) Investigation of 2P Be shape resonances using a quadratically convergent complex multiconfigurational self-consistent field method. J Phys Chem B 112(50):16214–16219. doi:10.1021/jp806998n, http://dx.doi.org/10.1021/jp806998n

    Article  CAS  Google Scholar 

  48. Zdánská PR, Moiseyev N (2005) Hartree–Fock orbitals for complex-scaled configuration interaction calculation of highly excited Feshbach resonances. J Chem Phys 123(19):194105. doi:10.1063/1.2110169, http://scitation.aip.org/content/aip/journal/jcp/123/19/10.1063/1.2110169

    Article  Google Scholar 

  49. Larsen AH, Whitenack DL, De Giovannini U, Wasserman A, Rubio A (2013) Stark ionization of atoms and molecules within density functional resonance theory. J Phys Chem Lett 4:2734–2738

    Article  CAS  Google Scholar 

  50. Whitenack DL, Wasserman A (2011) Density functional resonance theory of unbound electronic systems. Phys Rev Lett 107(16):163002

    Article  Google Scholar 

  51. Wasserman A, Moiseyev N (2007) Hohenberg-Kohn theorem for the lowest-energy resonance of unbound systems. Phys Rev Lett 98:093003. doi:10.1103/PhysRevLett.98.093003, http://link.aps.org/doi/10.1103/PhysRevLett.98.093003

    Article  Google Scholar 

  52. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244, http://link.aps.org/doi/10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  53. Telnov DA, Sosnova KE, Rozenbaum E, Chu SI (2013) Exterior complex scaling method in time-dependent density-functional theory: multiphoton ionization and high-order-harmonic generation of Ar atoms. Phys Rev A 87(5):053406

    Article  Google Scholar 

  54. van Leeuwen R, Baerends EJ (1994) Exchange–correlation potential with correct asymptotic behavior. Phys Rev A 49:2421–2431. doi:10.1103/PhysRevA.49.2421, http://link.aps.org/doi/10.1103/PhysRevA.49.2421

    Article  Google Scholar 

  55. Ammosov MV, Delone NB, Krainov VP (1986) Tunnel ionization of complex atoms and atomic ions in a varying electromagnetic-field. Zh Éksp Teor Fiz 91:2008–2013

    Google Scholar 

  56. Parker SD, McCurdy C (1989) Propagation of wave packets using the complex basis function method. Chem Phys Lett 156(5):483–488. doi:10.1016/S0009-2614(89)87316-6, http://www.sciencedirect.com/science/article/pii/S0009261489873166

    Article  CAS  Google Scholar 

  57. Bengtsson J, Lindroth E, Selstø S (2008) Solution of the time-dependent Schrödinger equation using uniform complex scaling. Phys Rev A 78:032502. doi:10.1103/PhysRevA.78.032502, http://link.aps.org/doi/10.1103/PhysRevA.78.032502

    Article  Google Scholar 

  58. Bengtsson J, Lindroth E, Selstø S (2012) Wave functions associated with time-dependent, complex-scaled Hamiltonians evaluated on a complex time grid. Phys Rev A 85:013419. doi:10.1103/PhysRevA.85.013419, http://link.aps.org/doi/10.1103/PhysRevA.85.013419

    Article  Google Scholar 

  59. Gilary I, Fleischer A, Moiseyev N (2005) Calculations of time-dependent observables in non-Hermitian quantum mechanics: the problem and a possible solution. Phys Rev A 72:012,117. doi:10.1103/PhysRevA.72.012117, http://link.aps.org/doi/10.1103/PhysRevA.72.012117

  60. García-Moliner F, Flores F (2009) Introduction to the theory of solid surfaces. Cambridge University Press, Cambridge

    Google Scholar 

  61. Kudrnovský J, Drchal V, Turek I, Weinberger P (1994) Magnetic coupling of interfaces: a surface-Green’s-function approach. Phys Rev B 50:16105–16108. doi:10.1103/PhysRevB.50.16105, http://link.aps.org/doi/10.1103/PhysRevB.50.16105

    Article  Google Scholar 

  62. Boucke K, Schmitz H, Kull HJ (1997) Radiation conditions for the time-dependent Schrödinger equation: application to strong-field photoionization. Phys Rev A 56(1):763–771

    Article  CAS  Google Scholar 

  63. Ermolaev A, Puzynin I, Selin A, Vinitsky S (1999) Integral boundary conditions for the time-dependent Schrödinger equation: atom in a laser field. Phys Rev A 60(6):4831–4845

    Article  CAS  Google Scholar 

  64. Hellums J, Frensley W (1994) Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation. Phys Rev B 49(4):2904–2906

    Article  CAS  Google Scholar 

  65. Kurth S, Stefanucci G, Almbladh CO, Rubio A, Gross EKU (2005) Time-dependent quantum transport: a practical scheme using density functional theory. Phys Rev B 72(3):035308

    Article  Google Scholar 

  66. Inglesfield JE (2001) Embedding at surfaces. Comput Phys Commun 137(1):89–107

    Article  CAS  Google Scholar 

  67. Inglesfield JE (2011) A time-dependent embedding calculation of surface electron emission. J Phys Condens Matter 23(30):305004

    Article  CAS  Google Scholar 

  68. Antoine X, Arnold A, Besse C, Ehrhardt M, Schädle A (2008) A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun Comput Phys 4:729–796

    Google Scholar 

  69. Inglesfield JE (1981) A method of embedding. J Phys C Solid State 14(26):3795–3806

    Article  CAS  Google Scholar 

  70. Inglesfield J (2008) Time-dependent embedding. J Phys Condens Matter 20:095215

    Article  Google Scholar 

  71. Ehrhardt M (1999) Discrete transparent boundary conditions for general Schrödinger-type equations. VLSI Des 9(4):325–338

    Article  Google Scholar 

  72. Szmytkowski R, Bielski S (2004) Dirichlet-to-Neumann and Neumann-to-Dirichlet embedding methods for bound states of the Schrödinger equation. Phys Rev A 70(4):042103

    Article  Google Scholar 

  73. Frensley W (1990) Boundary conditions for open quantum systems driven far from equilibrium. Rev Mod Phys 62(3):745–791

    Article  Google Scholar 

  74. De Giovannini U, Larsen AH, Rubio A (2015) Modeling electron dynamics coupled to continuum states in finite volumes. Eur Phys J B 88(3):56. doi:10.1140/epjb/e2015-50808-0

  75. Neuhauser D, Baer M (1989) The application of wave packets to reactive atom–diatom systems: a new approach. J Chem Phys 91(8):4651–4657

    Article  CAS  Google Scholar 

  76. Neuhauser D, Baer M (1989) The time-dependent Schrödinger equation: application of absorbing boundary conditions. J Chem Phys 90(8):4351

    Article  Google Scholar 

  77. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200

    Article  Google Scholar 

  78. Elenewski JE, Chen H (2014) Real-time transport in open quantum systems from PT-symmetric quantum mechanics. Phys Rev B 90(8):085104

    Article  Google Scholar 

  79. Varga K, Pantelides S (2007) Quantum transport in molecules and nanotube devices. Phys Rev Lett 98(7):076804

    Article  CAS  Google Scholar 

  80. Wibking BD, Varga K (2012) Quantum mechanics with complex injecting potentials. Phys Lett A 376(4):365–369

    Article  CAS  Google Scholar 

  81. Muga J, Palao JP, Navarro B, Egusquiza IL (2004) Complex absorbing potentials. Phys Rep 395(6):357–426

    Article  CAS  Google Scholar 

  82. Andrade X, Aspuru-Guzik A (2011) Prediction of the derivative discontinuity in density functional theory from an electrostatic description of the exchange and correlation potential. Phys Rev Lett 107(18):183002

    Article  Google Scholar 

  83. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  84. Crawford-Uranga A, De Giovannini U, Räsänen E, Oliveira MJT, Mowbray DJ, Nikolopoulos GM, Karamatskos ET, Markellos D, Lambropoulos P, Kurth S, Rubio A (2014) Time-dependent density-functional theory of strong-field ionization of atoms by soft X-rays. Phys Rev A 90(3):033412

    Article  Google Scholar 

  85. Krause J, Schafer K, Kulander K (1992) Calculation of photoemission from atoms subject to intense laser fields. Phys Rev A 45(7):4998–5010

    Article  CAS  Google Scholar 

  86. Kulander K, Mies F, Schafer K (1996) Model for studies of laser-induced nonlinear processes in molecules. Phys Rev A 53(4):2562–2570

    Article  CAS  Google Scholar 

  87. Lein M, Marangos J, Knight P (2002) Electron diffraction in above-threshold ionization of molecules. Phys Rev A 66(5):051404R

    Article  Google Scholar 

  88. Chelkowski S, Foisy C, Bandrauk AD (1998) Electron–nuclear dynamics of multiphoton H2 + dissociative ionization in intense laser fields. Phys Rev A 57(2):1176–1185

    Article  CAS  Google Scholar 

  89. Grobe R, Haan S, Eberly J (1999) A split-domain algorithm for time-dependent multi-electron wave functions. Comput Phys Commun 117(3):200–210

    Article  CAS  Google Scholar 

  90. De Giovannini U, Varsano D, Marques MAL, Appel H, Gross EKU, Rubio A (2012) Ab initio angle- and energy-resolved photoelectron spectroscopy with time-dependent density-functional theory. Phys Rev A 85:062515

    Article  Google Scholar 

  91. Shemer O, Brisker D, Moiseyev N (2005) Optimal reflection-free complex absorbing potentials for quantum propagation of wave packets. Phys Rev A 71(3):032716

    Article  Google Scholar 

  92. McCurdy CW, Stroud C, Wisinski M (1991) Solving the time-dependent Schrödinger equation using complex-coordinate contours. Phys Rev A 43(11):5980–5990

    Article  CAS  Google Scholar 

  93. Riss UV, Meyer HD (1995) Reflection-free complex absorbing potentials. J Phys B At Mol Opt 28(8):1475–1493

    Article  CAS  Google Scholar 

  94. Sosnova KE, Telnov DA, Rozenbaum EB, Chu SI (2014) Exterior complex scaling method in TDDFT: HHG of Ar atoms in intense laser fields. J Phys Conf Ser 488(1):012022

    Article  Google Scholar 

  95. Pohl A, Reinhard PG, Suraud E (2000) Towards single-particle spectroscopy of small metal clusters. Phys Rev Lett 84(22):5090–5093

    Article  CAS  Google Scholar 

  96. Dinh PM, Romaniello P, Reinhard PG, Suraud E (2013) Calculation of photoelectron spectra: a mean-field-based scheme. Phys Rev A 87(3):032514

    Article  Google Scholar 

  97. Caillat J, Zanghellini J, Kitzler M, Koch O, Kreuzer W, Scrinzi A (2005) Correlated multielectron systems in strong laser fields: a multiconfiguration time-dependent Hartree–Fock approach. Phys Rev A 71(1):012712

    Article  Google Scholar 

  98. Scrinzi A (2012) t-SURFF: fully differential two-electron photo-emission spectra. New J Phys 14(8):085008

    Article  Google Scholar 

  99. Tao L, Scrinzi A (2012) Photo-electron momentum spectra from minimal volumes: the time-dependent surface flux method. New J Phys 14(1):013021

    Article  Google Scholar 

  100. Crawford-Uranga A, De Giovannini U, Mowbray DJ, Kurth S, Rubio A (2014) Modelling the effect of nuclear motion on the attosecond time-resolved photoelectron spectra of ethylene. J Phys B At Mol Phys 47(12):124018

    Article  Google Scholar 

  101. De Giovannini U, Brunetto G, Castro A, Walkenhorst J, Rubio A (2013) Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory. Chemphyschem 14(7):1363–1376

    Article  Google Scholar 

  102. Gazibegović-Busuladžić A, Hasović E, Busuladžić M, Milosevic D, Kelkensberg F, Siu W, Vrakking M, Lepine F, Sansone G, Nisoli M, Znakovskaya I, Kling M (2011) Above-threshold ionization of diatomic molecules by few-cycle laser pulses. Phys Rev A 84(4):043426

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the European Research Council Advanced Grant DYNamo (ERC-2010-AdG-267374), Ministerio de Economía y Competitividad or MINECO, Spanish Grant (FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (IT578-13), European Commission FP7 project CRONOS (Grant number 280879-2), COST Actions CM1204 (XLIC), and MP1306 (EUSpec).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ask Hjorth Larsen , Umberto De Giovannini or Angel Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larsen, A.H., De Giovannini, U., Rubio, A. (2015). Dynamical Processes in Open Quantum Systems from a TDDFT Perspective: Resonances and Electron Photoemission. In: Ferré, N., Filatov, M., Huix-Rotllant, M. (eds) Density-Functional Methods for Excited States. Topics in Current Chemistry, vol 368. Springer, Cham. https://doi.org/10.1007/128_2014_616

Download citation

Publish with us

Policies and ethics