Skip to main content

UV-Excitation from an Experimental Perspective: Frequency Resolved

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 355))

Abstract

Electronic spectroscopy of DNA bases in the gas phase provides detailed information about the electronic excitation, which places the molecule in the Franck–Condon region in the excited state and thus prepares the starting conditions for excited-state dynamics. Double resonance or hole-burning spectroscopy in the gas phase can provide such information with isomer specificity, probing the starting potential energy landscape as a function of tautomeric form, isomeric structure, or hydrogen bonded or stacked cluster structure. Action spectroscopy, such REMPI, can be affected by excited-state lifetimes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernandez CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239

    CAS  Google Scholar 

  2. Kleinermanns K, Nachtigallova D, de Vries MS (2013) Excited state dynamics of DNA bases. Int Rev Phys Chem 32(2):308–342

    CAS  Google Scholar 

  3. Gonzalez-Ramirez I, Roca-Sanjuan D, Climent T, Serrano-Perez JJ, Merchan M, Serrano-Andres L (2011) On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theor Chem Acc 128(4–6):705–711

    CAS  Google Scholar 

  4. Serrano-Andres L, Merchan M (2009) Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. J Photoch Photobio C 10(1):21–32

    CAS  Google Scholar 

  5. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104(4):1977–2019

    CAS  Google Scholar 

  6. Plasser F, Barbatti M, Aquino AJA, Lischka H (2012) Electronically excited states and photodynamics: a continuing challenge. Theor Chem Acc 131(1):1073

    Google Scholar 

  7. de Vries MS, Hobza P (2007) Gas-phase spectroscopy of biomolecular building blocks. Annu Rev Phys Chem 58:585–612

    Google Scholar 

  8. Matsika S (2004) Radiationless decay of excited states of uracil through conical intersections. J Phys Chem A 108(37):7584–7590

    CAS  Google Scholar 

  9. Otterstedt J-EA (1973) Photostability and molecular structure. J Chem Phys 58:5716–5725

    CAS  Google Scholar 

  10. Zgierski MZ, Fujiwara T, Lim EC (2008) Conical intersections and ultrafast intramolecular excited-state dynamics in nucleic acid bases and electron donor-acceptor molecules. Chem Phys Lett 463(4–6):289–299

    CAS  Google Scholar 

  11. Zgierski MZ, Fujiwara T, Kofron WG, Lim EC (2007) Highly effective quenching of the ultrafast radiationless decay of photoexcited pyrimidine bases by covalent modification: photophysics of 5,6-trimethylenecytosine and 5,6-trimethyleneuracil. Phys Chem Chem Phys 9(25):3206–3209

    CAS  Google Scholar 

  12. Zgierski MZ, Patchkovskii S, Fujiwara T, Lim EC (2005) On the origin of the ultrafast internal conversion of electronically excited pyrimidine bases. J Phys Chem A 109(42):9384–9387

    CAS  Google Scholar 

  13. Tommasi S, Denissenko MF, Pfeifer GP (1997) Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. Cancer Res 57(21):4727–4730

    CAS  Google Scholar 

  14. Malone RJ, Miller AM, Kohler B (2003) Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption. Photochem Photobiol 77(2):158–164

    CAS  Google Scholar 

  15. Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J Phys Chem A 110(38):10921–10924

    CAS  Google Scholar 

  16. Kabelac M, Plützer C, Kleinermanns K, Hobza P (2004) Isomer selective IR experiments and correlated ab initio quantum chemical calculations support planar H-bonded structure of the 7-methyl adenine - adenine and stacked structure of the 9-methyl adenine–adenine base pairs. Phys Chem Chem Phys 6(10):2781–2785

    CAS  Google Scholar 

  17. Lee Y, Schmitt M, Kleinermanns K, Kim B (2006) Observation of ultraviolet rotational band contours of the DNA base adenine: determination of the transition moment. J Phys Chem A 110(42):11819–11823

    CAS  Google Scholar 

  18. Nir E, Hünig I, Kleinermanns K, de Vries MS (2003) The nucleobase cytosine and the cytosine dimer investigated by double resonance laser spectroscopy and ab initio calculations. Phys Chem Chem Phys 5(21):4780–4785

    CAS  Google Scholar 

  19. Brady BB, Peteanu LA, Levy DH (1988) The electronic spectra of the pyrimidine bases uracil and thymine in a supersonic molecular beam. Chem Phys Lett 147:538–543

    CAS  Google Scholar 

  20. Nir E, Imhof P, Kleinermanns K, de Vries MS (2000) REMPI spectroscopy of laser desorbed guanosines. J Am Chem Soc 122(33):8091–8092

    CAS  Google Scholar 

  21. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2002) Pairing of the nucleobases guanine and cytosine in the gas phase studied by IR-UV double-resonance spectroscopy and ab initio calculations. Phys Chem Chem Phys 4(5):732–739

    CAS  Google Scholar 

  22. Abo-Riziq A, Grace L, Nir E, Kabelac M, Hobza P, de Vries MS (2005) Photochemical selectivity in guanine-cytosine base-pair structures. Proc Natl Acad Sci USA 102(1):20–23

    CAS  Google Scholar 

  23. Plützer C, Hünig I, Kleinermanns K, Nir E, de Vries MS (2003) Pairing of isolated nucleobases: double resonance laser spectroscopy of adenine-thymine. Chem Phys Chem 4(8):838–842

    Google Scholar 

  24. Nir E, Plützer C, Kleinermanns K, de Vries M (2002) Properties of isolated DNA bases, base pairs and nucleosides examined by laser spectroscopy. Eur Phys J D 20(3):317–329

    CAS  Google Scholar 

  25. Plützer C, Hünig I, Kleinermanns K (2003) Pairing of the nucleobase adenine studied by IR-UV double-resonance spectroscopy and ab initio calculations. Phys Chem Chem Phys 5(6):1158–1163

    Google Scholar 

  26. Nachtigallova D, Lischka H, Szymczak JJ, Barbatti M, Hobza P, Gengeliczki Z, Pino G, Callahan MP, de Vries MS (2010) The effect of C5 substitution on the photochemistry of uracil. Phys Chem Chem Phys 12(19):4924–4933

    CAS  Google Scholar 

  27. Gengeliczki Z, Callahan MP, Svadlenak N, Pongor CI, Sztaray B, Meerts L, Nachtigallova D, Hobza P, Barbatti M, Lischka H, de Vries MS (2010) Effect of substituents on the excited-state dynamics of the modified DNA bases 2,4-diaminopyrimidine and 2,6-diaminopurine. Phys Chem Chem Phys 12(20):5375–5388

    CAS  Google Scholar 

  28. Nir E, Grace L, Brauer B, de Vries MS (1999) REMPI spectroscopy of jet-cooled guanine. J Am Chem Soc 121(20):4896–4897

    CAS  Google Scholar 

  29. Plützer C, Nir E, de Vries MS, Kleinermanns K (2001) IR-UV double-resonance spectroscopy of the nucleobase adenine. Phys Chem Chem Phys 3(24):5466–5469

    Google Scholar 

  30. Nir E, Muller M, Grace LI, de Vries MS (2002) REMPI spectroscopy of cytosine. Chem Phys Lett 355(1–2):59–64

    CAS  Google Scholar 

  31. Arrowsmith P, de Vries MS, Hunziker HE, Wendt HR (1988) Pulsed laser desorption near a jet orifice: concentration profiles of entrained perylene vapor. Appl Phys B 46:165–173

    Google Scholar 

  32. Meijer G, de Vries MS, Hunziker HE, Wendt HR (1990) Laser desorption jet-cooling of organic molecules. Cooling characteristics and detection sensitivity. Appl Phys B 51:395–403

    Google Scholar 

  33. Tembreull R, Lubman DM (1987) Resonant two-photon ionization in biomolecules using laser desorption in supersonic beam-mass spectrometry. Appl Spectrosc 41:431–436

    CAS  Google Scholar 

  34. Boesl U, Grotemeyer J, Walter K, Schlag EW (1986) Resonance ionization and time-of-flight mass spectrometry, high resolution, involatile molecules. Resonance Ionization Spectrosc 369:223–228

    Google Scholar 

  35. Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Ultraviolet spectroscopy and tautomerism of the DNA base guanine and its hydrate formed in a supersonic jet. Chem Phys 270(1):205–214

    CAS  Google Scholar 

  36. Saigusa H, Urashima S, Asami H (2009) IR-UV double resonance spectroscopy of the hydrated clusters of guanosine and 9-methylguanine: evidence for hydration structures involving the sugar group. J Phys Chem A 113(15):3455–3462

    CAS  Google Scholar 

  37. Boyarkin OV, Mercier SR, Kamariotis A, Rizzo TR (2006) Electronic spectroscopy of cold, protonated tryptophan and tyrosine. J Am Chem Soc 128(9):2816–2817

    CAS  Google Scholar 

  38. Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128(22):7320–7328

    CAS  Google Scholar 

  39. Chapo CJ, Paul JB, Provencal RA, Roth K, Saykally RJ (1998) Is arginine zwitterionic or neutral in the gas phase? Results from IR cavity ringdown spectroscopy. J Am Chem Soc 120(49):12956–12957

    CAS  Google Scholar 

  40. Alonso JL, Pena I, Lopez JC, Vaquero V (2009) Rotational spectral signatures of four tautomers of guanine. Angew Chem Int Ed 48(33):6141–6143

    CAS  Google Scholar 

  41. Nir E, Kleinermanns K, Grace L, de Vries MS (2001) On the photochemistry of purine nucleobases. J Phys Chem A 105(21):5106–5110

    CAS  Google Scholar 

  42. Seefeld KA, Plützer C, Löwenich D, Häber T, Linder R, Kleinermanns K, Tatchen J, Marian CM (2005) Tautomers and electronic states of jet-cooled 2-aminopurine investigated by double resonance spectroscopy and theory. Phys Chem Chem Phys 7(16):3021–3026

    CAS  Google Scholar 

  43. Holmen A, Broo A, Albinsson B, Norden B (1997) Assignment of electronic transition moment directions of adenine from linear dichroism measurements. J Am Chem Soc 119:12240–12250

    CAS  Google Scholar 

  44. Broo A (1998) A theoretical investigation of the physical reason for the very different luminescence properties of the two isomers adenine and 2-aminopurine. J Phys Chem A 102:526–531

    CAS  Google Scholar 

  45. Andreasson J, Holmén A, Albinsson B (1999) The photophysical properties of the adenine chromophore. J Phys Chem B 103(44):9782–9789

    CAS  Google Scholar 

  46. Kim NJ, Jeong G, Kim YS, Sung J, Kim SK, Park YD (2000) Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine. J Chem Phys 113(22):10051–10055

    CAS  Google Scholar 

  47. Mishra SK, Shukla MK, Mishra PC (2000) Electronic spectra of adenine and 2-aminopurine: an ab initio study of energy level diagrams of different tautomers in gas phase and aqueous solution. Spectrochim Acta pt A 56(7):1355–1384

    Google Scholar 

  48. Lührs DC, Viallon J, Fischer I (2001) Excited state spectroscopy and dynamics of isolated adenine and 9-methyladenine. Phys Chem Chem Phys 3(10):1827–1831

    Google Scholar 

  49. Kang H, Jung B, Kim SK (2003) Mechanism for ultrafast internal conversion of adenine. J Chem Phys 118(15):6717–6719

    CAS  Google Scholar 

  50. Sobolewski AL, Domcke W (2002) On the mechanism of nonradiative decay of DNA bases: ab initio and TDDFT results for the excited states of 9H-adenine. Eur Phys J D 20:369–374

    CAS  Google Scholar 

  51. Plützer C, Kleinermanns K (2002) Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys Chem Chem Phys 4(20):4877–4882

    Google Scholar 

  52. Barbatti M, Lischka H (2007) Can the nonadiabatic photodynamics of aminopyrimidine be a model for the ultrafast deactivation of adenine? J Phys Chem A 111(15):2852–2858

    CAS  Google Scholar 

  53. Marian CM (2005) A new pathway for the rapid decay of electronically excited adenine. J Chem Phys 122:104314

    Google Scholar 

  54. Hünig I, Plützer C, Seefeld KA, Löwenich D, Nispel M, Kleinermanns K (2004) Photostability of isolated and paired nucleobases: N–H dissociation of adenine and hydrogen transfer in its base pairs examined by laser spectroscopy. ChemPhysChem 5(9):1427–1431

    Google Scholar 

  55. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2019

    Google Scholar 

  56. Zierhut M, Roth W, Fischer I (2004) Dynamics of H-atom loss in adenine. Phys Chem Chem Phys 6(22):5178–5183

    CAS  Google Scholar 

  57. Zechmann G, Barbatti M (2008) Ab initio study of the photochemistry of aminopyrimidine. Int J Quantum Chem 108(7):1266–1276

    CAS  Google Scholar 

  58. Marian CM (2005) A new pathway for the rapid decay of electronically excited adenine. J Chem Phys 122(10):10

    Google Scholar 

  59. Kistler KA, Matsika S (2008) Three-state conical intersections in cytosine and pyrimidinone bases. J Chem Phys 128(21):215102

    Google Scholar 

  60. Kistler KA, Matsika S (2007) Cytosine in context: a theoretical study of substituent effects on the excitation energies of 2-pyrimidinone derivatives. J Phys Chem A 111(35):8708–8716

    CAS  Google Scholar 

  61. Kistler KA, Matsika S (2007) Radiationless decay mechanism of cytosine: an ab initio study with comparisons to the fluorescent analogue 5-methyl-2-pyrimidinone. J Phys Chem A 111(14):2650–2661

    CAS  Google Scholar 

  62. Yarasi S, Brost P, Loppnow GR (2007) Initial excited-state structural dynamics of thymine are coincident with the expected photochemical dynamics. J Phys Chem A 111(24):5130–5135

    CAS  Google Scholar 

  63. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. J Chem Phys 122(7):074316–074317

    Google Scholar 

  64. Quinones E, Arce R (1989) Photochemistry and photophysics of purine free base and 6-methylpurine. J Am Chem Soc 111(21):8218–8223

    CAS  Google Scholar 

  65. Wilson RW, Callis PR (1980) Fluorescent tautomers and the apparent photophysics of adenine and guanine. Photochem Photobiol 31:323–327

    CAS  Google Scholar 

  66. Seefeld K, Brause R, Häber T, Kleinermanns K (2007) Imino tautomers of gas-phase guanine from mid-infrared laser spectroscopy. J Phys Chem A 111(28):6217–6221

    CAS  Google Scholar 

  67. Nachtigallova D, Hobza P, Spirko V (2008) Assigning the NH stretches of the guanine tautomers using adiabatic separation: CCSD(T) benchmark calculations. J Phys Chem A 112(9):1854–1856

    CAS  Google Scholar 

  68. Marian CM (2007) The guanine tautomer puzzle: quantum chemical investigation of ground and excited states. J Phys Chem A 111(8):1545–1553

    CAS  Google Scholar 

  69. Cerny J, Spirko V, Mons M, Hobza P, Nachtigallova D (2006) Theoretical study of the ground and excited states of 7-methyl guanine and 9-methyl guanine: comparison with experiment. Phys Chem Chem Phys 8(26):3059–3065

    CAS  Google Scholar 

  70. Kang H, Lee KT, Jung B, Ko YJ, Kim SK (2002) Intrinsic lifetimes of the excited state of DNA and RNA bases. J Am Chem Soc 124(44):12958–12959

    CAS  Google Scholar 

  71. Kistler KA, Matsika S (2007) The fluorescence mechanism of 5-methyl-2-pyrimidinone: an ab initio study of a fluorescent pyrimidine analog. Photochem Photobiol 83(3):611–624

    CAS  Google Scholar 

  72. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Phys Chem Chem Phys 6(10):2796–2801

    CAS  Google Scholar 

  73. Perun S, Sobolewski AL, Domcke W (2005) Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. J Am Chem Soc 127(17):6257–6265

    CAS  Google Scholar 

  74. Tomic K, Tatchen J, Marian CM (2005) Quantum chemical investigation of the electronic spectra of the keto, enol, and keto-imine tautomers of cytosine. J Phys Chem A 109(37):8410–8418

    CAS  Google Scholar 

  75. Trygubenko SA, Bogdan TV, Rueda M, Orozco M, Luque FJ, Sponer J, Slavicek P, Hobza P (2002) Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution - part 1. Cytosine. Phys Chem Chem Phys 4(17):4192–4203

    CAS  Google Scholar 

  76. Kobayashi R (1998) A CCSD(T) study of the relative stabilities of cytosine tautomers. J Phys Chem A 102(52):10813–10817

    CAS  Google Scholar 

  77. Szczesniak M, Szczepaniak K, Kwiatkowski JS, Kubulat K, Person WB (1988) Matrix-isolation infrared studies of nucleic-acid constituents. 5. Experimental matrix-isolation and theoretical abinitio scf molecular-orbital studies of the infrared-spectra of cytosine monomers. J Am Chem Soc 110:8319–8330

    CAS  Google Scholar 

  78. Brown RD, Godfrey PD, McNaughton D, Pierlot A (1989) Tautomers of cytosine by microwave spectroscopy. J Am Chem Soc 111:2308–2310

    CAS  Google Scholar 

  79. Schiedt J, Weinkauf R, Neumark DM, Schlag EW (1998) Anion spectroscopy of uracil, thymine and the amino-oxo and amino-hydroxy tautomers of cytosine and their water clusters. Chem Phys 239(1–3):511–524

    CAS  Google Scholar 

  80. Kosma K, Schroter C, Samoylova E, Hertel IV, Schultz T (2009) Excited-state dynamics of cytosine tautomers. J Am Chem Soc 131(46):16939–16943

    CAS  Google Scholar 

  81. Gonzalez-Vazquez J, Gonzalez L (2010) A time-dependent picture of the ultrafast deactivation of keto-cytosine including three-state conical intersections. ChemPhysChem 11(17):3617–3624

    CAS  Google Scholar 

  82. Podolyan Y, Gorb L, Leszczynski J (2003) Ab initio study of the prototropic tautomerism of cytosine and guanine and their contribution to spontaneous point mutations. Int J Mol Sci 4(7):410–421

    CAS  Google Scholar 

  83. Gorb L, Podolyan Y, Leszczynski J (1999) A theoretical investigation of tautomeric equilibria and proton transfer in isolated and monohydrated cytosine and isocytosine molecules. J Mol Struct Theochem 487(1–2):47–55

    CAS  Google Scholar 

  84. Chin W, Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomer contributions to the near UV spectrum of guanine: towards a refined picture for the spectroscopy of purine molecules. Eur Phys J D 20(3):347–355

    CAS  Google Scholar 

  85. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2001) Guanine tautomerism revealed by UV-UV and IR-UV hole burning spectroscopy. J Chem Phys 115:4604–4611

    CAS  Google Scholar 

  86. Brown RD, Godfrey PD, Mcnaughton D, Pierlot AP (1989) A study of the major gas-phase tautomer of adenine by microwave spectroscopy. Chem Phys Lett 156(1):61–63

    CAS  Google Scholar 

  87. Brown RD, Godfrey PD, Mcnaughton D, Pierlot AP (1988) Microwave-spectrum of uracil. J Am Chem Soc 110(7):2329–2330

    CAS  Google Scholar 

  88. Vaquero V, Sanz ME, Lopez JC, Alonso JL (2007) The structure of uracil: a laser ablation rotational study. J Phys Chem A 111(18):3443–3445

    CAS  Google Scholar 

  89. Viant MR, Fellers RS, Mclaughlin RP, Saykally RJ (1995) Infrared-laser spectroscopy of uracil in a pulsed slit jet. J Chem Phys 103(21):9502–9505

    CAS  Google Scholar 

  90. Brown RD, Godfrey PD, Mcnaughton D, Pierlot AP (1989) Microwave-spectrum of the major gas-phase tautomer of thymine. J Chem Soc Chem Commun 1:37–38

    Google Scholar 

  91. Chin W, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Gorb L, Leszczynski J (2004) Gas phase rotamers of the nucleobase 9-methylguanine enol and its monohydrate: optical spectroscopy and quantum mechanical calculations. J Phys Chem A 108(40):8237–8243

    CAS  Google Scholar 

  92. Abo-Riziq A, Crews B, Grace L, de Vries MS (2005) Microhydration of guanine base pairs. J Am Chem Soc 127(8):2374–2375

    CAS  Google Scholar 

  93. Smith VR, Samoylova E, Ritze HH, Radloff W, Schultz T (2010) Excimer states in microhydrated adenine clusters. Phys Chem Chem Phys 12(33):9632–9636

    CAS  Google Scholar 

  94. Ritze HH, Lippert H, Samoylova E, Smith VR, Hertel IV, Radloff W, Schultz T (2005) Relevance of pi sigma(*) states in the photoinduced processes of adenine, adenine dimer, and adenine-water complexes. J Chem Phys 122(22):224320

    Google Scholar 

  95. Saigusa H, Urashima S, Asami H, Ohba M (2010) Microhydration of the guanine-guanine and guanine-cytosine base pairs. J Phys Chem A 114(42):11231–11237

    Google Scholar 

  96. Saigusa H, Mizuno N, Asami H, Takahashi K, Tachikawa M (2008) Ultraviolet spectroscopy and theoretical calculations of mono- and dihydrated clusters of the guanine nucleosides: possibility of different hydration structures for guanosine and 2′-deoxyguanosine. Bull Chem Soc Jpn 81(10):1274–1281

    CAS  Google Scholar 

  97. Perun S, Sobolewski AL, Domcke W (2005) Photostability of 9H-adenine: mechanisms of the radiationless deactivation of the lowest excited singlet states. Chem Phys 313(1–3):107–112

    CAS  Google Scholar 

  98. Sobolewski AL, Domcke W (2006) Photophysics of intramolecularly hydrogen-bonded aromatic systems: ab initio exploration of the excited-state deactivation mechanisms of salicylic acid. Phys Chem Chem Phys 8(29):3410–3417

    CAS  Google Scholar 

  99. Shemesh D, Hattig C, Domcke W (2009) Photophysics of the Trp-Gly dipeptide: role of electron and proton transfer processes for efficient excited-state deactivation. Chem Phys Lett 482(1–3):38–43

    CAS  Google Scholar 

  100. Shemesh D, Sobolewski AL, Domcke W (2009) Efficient excited-state deactivation of the gly-phe-ala tripeptide via an electron-driven proton-transfer process. J Am Chem Soc 131(4):1374

    CAS  Google Scholar 

  101. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W (2004) Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306(5702):1765–1768

    CAS  Google Scholar 

  102. Sobolewski AL, Domcke W (2004) Ab Initio studies on the photophysics of the guanine–cytosine base pair. Phys Chem Chem Phys 6:2763–2771

    CAS  Google Scholar 

  103. Perun S, Sobolewski AL, Domcke W (2006) Role of electron-driven proton-transfer processes in the excited-state deactivation of the adenine-thymine base pair. J Phys Chem A 110:9031

    CAS  Google Scholar 

  104. Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408(6815):949–951

    CAS  Google Scholar 

  105. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2002) Pairing of the nucleobase guanine studied by IR-UV double-resonance spectroscopy and ab initio calculations. Phys Chem Chem Phys 4(5):740–750

    CAS  Google Scholar 

  106. Nolting D, Weinkauf R, Hertel IV, Schultz T (2007) Excited-state relaxation of protonated adenine. ChemPhysChem 8(5):751–755

    CAS  Google Scholar 

  107. Samoylova E, Lippert H, Ullrich S, Hertel IV, Radloff W, Schultz T (2005) Dynamics of photoinduced processes in adenine and thymine base pairs. J Am Chem Soc 127(6):1782–1786

    CAS  Google Scholar 

  108. Ullrich S, Schultz T, Zgierski MZ, Stolow A (2004) Direct observation of electronic relaxation dynamics in adenine via time-resolved photoelectron spectroscopy. J Am Chem Soc 126(8):2262–2263

    CAS  Google Scholar 

  109. Samoylova E, Radloff W, Ritze HH, Schultz T (2009) Observation of proton transfer in 2-aminopyridine dimer by electron and mass spectroscopy. J Phys Chem A 113(29):8195–8201

    CAS  Google Scholar 

  110. Samoylova E, Smith VR, Ritze HH, Radloff W, Kabelac M, Schultz T (2006) Ultrafast deactivation processes in aminopyridine clusters: excitation energy dependence and isotope effects. J Am Chem Soc 128(49):15652–15656

    CAS  Google Scholar 

  111. Nir E, Hünig I, Kleinermanns K, de Vries MS (2004) Conformers of guanosines and their vibrations in the electronic ground and excited states, as revealed by double-resonance spectroscopy and ab initio calculations. ChemPhysChem 5(1):131–137

    CAS  Google Scholar 

  112. Nir E, de Vries MS (2002) Fragmentation of laser-desorbed 9-substituted adenines. Int J Mass spectrom 219(1):133–138

    CAS  Google Scholar 

  113. Asami H, Yagi K, Ohba M, Urashima S, Saigusa H (2013) Stacked base-pair structures of adenine nucleosides stabilized by the formation of hydrogen-bonding network involving the two sugar groups. Chem Phys 419:84–89

    CAS  Google Scholar 

  114. Saigusa H, Lim EC (1996) Excimer formation in van der Waals dimers and clusters of aromatic molecules. Acc Chem Res 29(4):171–178

    CAS  Google Scholar 

  115. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernandez CE, Swaminathan VN, Carell T, Zinth W, Kohler B (2007) Thymine dimerization in DNA is an ultrafast photoreaction. Science 315(5812):625–629

    CAS  Google Scholar 

  116. Crespo-Hernández CE, Cohen B, Kohler B (2005) Base stacking controls excited-state dynamics in A·T DNA. Nature 436:1141–1144

    Google Scholar 

  117. Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B (2008) UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. Proc Natl Acad Sci USA 105:10285–10290

    CAS  Google Scholar 

  118. Crespo-Hernández CE, de La Harpe K, Kohler B (2008) Ground-state recovery following UV excitation is much slower in G•C-DNA duplexes and hairpins than in mononucleotides. J Am Chem Soc 130:10844–10845

    Google Scholar 

Download references

Acknowledgement

This material is based on work supported by the National Science Foundation under CHE-1301305 and by NASA under Grant No. NNX12AG77G. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

TOC Graphic

figure a

Following electronic excitation, probed in the frequency domain (blue), internal conversion (red) can compete with fluorescence (green) and other photochemical pathways (black).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattanjah S. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Vries, M.S. (2014). UV-Excitation from an Experimental Perspective: Frequency Resolved. In: Barbatti, M., Borin, A., Ullrich, S. (eds) Photoinduced Phenomena in Nucleic Acids I. Topics in Current Chemistry, vol 355. Springer, Cham. https://doi.org/10.1007/128_2014_560

Download citation

Publish with us

Policies and ethics