Skip to main content

Photoionization Spectroscopy of Nucleobases and Analogues in the Gas Phase Using Synchrotron Radiation as Excitation Light Source

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 355))

Abstract

We review here the photoionization and photoelectron spectroscopy of the gas phase nucleic acid bases adenine, thymine, uracil, cytosine, and guanine, as well as the three base analogues 2-hydroxyisoquinoline, 2-pyridone, and δ-valerolactam in the vacuum ultraviolet (VUV) spectral regime. The chapter focuses on experimental work performed with VUV synchrotron radiation and related ab initio quantum chemical calculations of higher excited states beyond the ionization energy. After a general part, where experimental and theoretical techniques are described in detail, key results are presented by order of growing complexity in the spectra of the molecules. Here we concentrate on (1) the accurate determination of ionization energies of isolated gas phase NABs and investigation of the vibrational structure of involved ionic states, including their mutual vibronic couplings, (2) the treatment of tautomerism after photoionization, in competition with other intramolecular processes, (3) the study of fragmentation of these molecular systems at low and high internal energies, and (4) the study of the evolution of the covalent character of hydrogen bonding upon substitution, i.e., examination of electronic effects (acceptor, donor, etc.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AE:

Appearance energy

AIE:

Adiabatic ionization energy

EI:

Electron impact ionization

FEL:

Free electron laser

IE:

Ionization energy

NAB:

Nucleic acid base

PE:

Photoelectron

PES:

Photoelectron spectroscopy

PI:

Photoion

PIE:

Photoionization efficiency

PIMS:

Photoionization mass spectrometry

SPES:

Slow photoelectron spectrum

SPI:

Single photon ionization

SR:

Synchrotron radiation

TOF:

Time-of-flight

TPEPICO:

Threshold photoelectron photoion coincidence

TPES:

Threshold photoelectron spectroscopy

VIE:

Vertical ionization energy

VUV:

Vacuum ultraviolet

References

  1. Hagen U (1986) Radiat Environ Biophys 25:261

    CAS  Google Scholar 

  2. Kumar A, Sevilla MD (2010) Chem Rev 110:7002

    CAS  Google Scholar 

  3. Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A (2009) J Radiat Res 50:27

    CAS  Google Scholar 

  4. Ng CY (2014) Annu Rev Phys Chem 2014:65

    Google Scholar 

  5. Pan Y, Zhang L, Guo H, Deng L, Qi F (2010) Int Rev Phys Chem 29:369

    CAS  Google Scholar 

  6. Zhou Z, Guo H, Qi F (2011) Trends Anal Chem 30:1400

    CAS  Google Scholar 

  7. Bodi A, Hemberger P, Gerber T, Sztáray B (2012) Rev Sci Instr 83:083105

    Google Scholar 

  8. Garcia GA, Cunha de Miranda BK, Tia M, Daly S, Nahon L (2013) Rev Sci Instr 84:053112

    Google Scholar 

  9. Poully JC, Schermann JP, Nieuwjaer N, Lecomte F, Gégoire G, Desfrançois C, Garcia GA, Nahon L, Nandi D, Poisson L, Hochlaf M (2010) Phys Chem Chem Phys 12:3566

    CAS  Google Scholar 

  10. Gaie-Levrel F, Garcia GA, Schwell M, Nahon L (2011) Phys Chem Chem Phys 13:7024

    CAS  Google Scholar 

  11. Touboul D, Gaie-Levrel F, Garcia GA, Nahon L, Poisson L, Schwell M, Hochlaf M (2013) J Chem Phys 138:094203

    CAS  Google Scholar 

  12. Bravaya BS, Kostko O, Ahmed M, Krylov AI (2010) Phys Chem Chem Phys 12:2292

    CAS  Google Scholar 

  13. Golan A, Bravaya KB, Kudirka R, Kostko O, Leone SR, Krylov AI, Ahmed M (2012) Nat Chem 4:323

    CAS  Google Scholar 

  14. Golan A, Ahmed M (2012) J Vis Exp 68:e50164

    Google Scholar 

  15. Lauer G, Schäfer WW, Schweig A (1975) Tetrahedron Lett 45:3942

    Google Scholar 

  16. Dougherty D, Wittel K, Meeks J, McGlynn SP (1976) J Am Chem Soc 98:3815

    CAS  Google Scholar 

  17. Padva A, O'Donnell TJ, LeBreton PR (1976) Chem Phys Lett 41:278

    CAS  Google Scholar 

  18. Peng S, Padva A, LeBreton PR (1976) Proc Natl Acad Sci USA 73:2966

    CAS  Google Scholar 

  19. Dougherty D, Younathan ES, Voll S, Abdulnur S, McGlynn SP (1978) J Electron Spectrosc Relat Phenom 13:379

    CAS  Google Scholar 

  20. Urano S, Yang X, LeBreton PR (1989) J Mol Struct 214:315

    CAS  Google Scholar 

  21. Kubota M, Kobayashi T (1996) J Electron Spectrosc Relat Phenom 82:61

    CAS  Google Scholar 

  22. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2002) J Phys Chem A 106:8411

    CAS  Google Scholar 

  23. Trofimov AB, Schirmer J, Kobychev VB, Potts AW, Holland DMP, Karlsson L (2006) J Phys B At Mol Opt Phys 39:305

    CAS  Google Scholar 

  24. Zaytseva IL, Trofimov AB, Schirmer J, Plekan O, Feyer V, Richter R, Coreno M, Prince KC (2009) J Phys Chem A 113:15142

    CAS  Google Scholar 

  25. Müller-Dethlefs K, Schlag EW (1998) Angew Chem Int Ed 37:1346

    Google Scholar 

  26. Leach S, Eland JHD, Price SD (1989) J Phys Chem 93:7575

    CAS  Google Scholar 

  27. Rice JM, Dudek GO, Barber M (1965) J Am Chem Soc 87:4569

    CAS  Google Scholar 

  28. Rice JM, Dudek GO (1967) J Am Chem Soc 89:2719

    CAS  Google Scholar 

  29. Lifschitz C, Bergmann ED, Pullman B (1967) Tetrahedron Lett 46:4583

    CAS  Google Scholar 

  30. Ulrich J, Teoule R, Massot R, Cornu A (1969) Org Mass Spectrom 2:1183

    CAS  Google Scholar 

  31. Barrio MG, Scopes DIC, Holtwick JB, Leonard NJ (1981) Proc Natl Acad Sci USA 78:3986

    Google Scholar 

  32. Sethi SK, Gupta SP, Jenkins EE, Whitehead CW, Townsend LB, McCloskey JA (1982) J Am Chem Soc 104:3349

    CAS  Google Scholar 

  33. Denifl S, Sonnweber B, Hanel G, Scheier P, Märk TD (2004) Int J Mass Spectrom 238:47

    CAS  Google Scholar 

  34. Denifl S, Ptasińska S, Gstir B, Scheier P, Märk TD (2004) Int J Mass Spectrom 232:99

    CAS  Google Scholar 

  35. Turecek F, Wolken JK (2001) J Phys Chem A 105:8740

    CAS  Google Scholar 

  36. Wolken JK, Yao C, Turecek F, Polce MJ, Wesdemiotis C (2007) Int J Mass Spectrom 267:30

    CAS  Google Scholar 

  37. Jochims HW, Schwell M, Baugärtel H, Leach S (2005) Chem Phys 314:263

    CAS  Google Scholar 

  38. Belau L, Wilson KR, Leone SR, Ahmed M (2007) J Phys Chem A 111:7562

    CAS  Google Scholar 

  39. Plekan O, Feyer V, Richter R, Coreno M, de Simone M, Prince KC (2007) Chem Phys 334:53

    CAS  Google Scholar 

  40. Feyer V, Plekan O, Richter R, Coreno M, Prince KC (2009) Chem Phys 358:33

    CAS  Google Scholar 

  41. Zhou J, Kostko O, Nicolas C, Tang X, Belau L, de Vries MS, Ahmed M (2009) J Phys Chem A 113:4829

    CAS  Google Scholar 

  42. Kostko O, Bravaya KB, Krylov AI, Ahmed M (2010) Phys Chem Chem Phys 12:2860

    CAS  Google Scholar 

  43. Bravaya KB, Kostko O, Dolgikh S, Landau A, Ahmed M, Krylov AI (2010) J Phys Chem A 114:12305

    CAS  Google Scholar 

  44. Khistyaev K, Bravaya KB, Kamarchik E, Kostko O, Ahmed M, Krylov AI (2011) Faraday Discuss 150:313

    Google Scholar 

  45. Khistyaev K, Golan A, Bravaya KB, Kamarchik E, Orms N, Krylov AI, Ahmed M (2013) J Phys Chem A 117:6789

    Google Scholar 

  46. Mysak E, Wilson KR, Jiminez-Cruz M, Ahmed M, Baer T (2005) Anal Chem 77:5953

    CAS  Google Scholar 

  47. Wilson KR, Jiminez-Cruz M, Nicolas C, Belau L, Leone SR, Ahmed M (2006) J Phys Chem A 110:2106

    CAS  Google Scholar 

  48. Kostko O, Takahashi LK, Ahmed M (2011) Chem Asian J 6:3066

    CAS  Google Scholar 

  49. Gaie-Levrel F, Gutlé C, Jochims HW, Rühl E, Schwell M (2008) J Phys Chem A 112:5138

    CAS  Google Scholar 

  50. Leach S, Schwell M, Garcia GA, Benilan Y, Fray N, Gazeau MC, Gaie-Levrel F, Champion N, Guillemin JC (2013) J Chem Phys 139:184304

    Google Scholar 

  51. Baer T, Mayer PM (1997) J Am Soc Mass Spectrom 8:103–115

    CAS  Google Scholar 

  52. Briant M, Poisson L, Hochlaf M, de Pujo P, Gaveau MA, Soep B (2012) Phys Rev Lett 109:193401

    Google Scholar 

  53. Gaussian, Revision A, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

    Google Scholar 

  54. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A. See http://www.molpro.net for more details (versions 2008, 2010 and 2012)

  55. Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222

    Google Scholar 

  56. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  57. Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C (1989) Chem Phys Lett 162:165

    CAS  Google Scholar 

  58. Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Mueller T, Szalay PG, Brown FB, Ahlrichs R, Boehm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Hoechtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schueler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z, Barbatti M, Matsika S, Schuurmann M, Yarkony DR, Brozell SR, Beck EV, Blaudeau J-P (2006) COLUMBUS: an ab initio electronic structure program, release 5.9.1: www.univie.ac.at/columbus

  59. Stanton JF, Gauss J, Watts JD, Lauderdale WJ, Bartlett RJ (1992) Int J Quantum Chem S 26:879

    CAS  Google Scholar 

  60. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem XIV:545

    Google Scholar 

  61. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  62. Hampel C, Peterson K, Werner HJ (1992) Chem Phys Lett 190:1

    Google Scholar 

  63. Amos RD, Andrews JS, Handy NC, Knowles PJ (1991) Chem Phys Lett 185:256

    CAS  Google Scholar 

  64. Knowles PJ, Hampel C, Werner HJ (1993) J Chem Phys 99:5219

    CAS  Google Scholar 

  65. Knowles PJ, Hampel C, Werner HJ (2000) J Chem Phys 112:3106

    CAS  Google Scholar 

  66. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    CAS  Google Scholar 

  67. Parr RG, Yang W (1998) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  68. Chong DP (ed) (1995) Recent advances in density functional methods. World Scientific, Singapore, p 287

    Google Scholar 

  69. Improta R, Scalmani G, Barone B (2000) Int J Mass Spectrom 201:321

    CAS  Google Scholar 

  70. Adler TB, Knizia G, Werner HJ (2007) J Chem Phys 127:221106

    Google Scholar 

  71. Werner HJ, Knizia G, Manby FR (2011) Mol Phys 109:407

    CAS  Google Scholar 

  72. Knizia G, Adler TB, Werner HJ (2009) J Chem Phys 130:054104

    Google Scholar 

  73. Brites V, Hochlaf M (2009) J Phys Chem A 113:11107

    CAS  Google Scholar 

  74. Lique F, Klos J, Hochlaf M (2010) Phys Chem Chem Phys 12:15672

    CAS  Google Scholar 

  75. Rauhut G, Knizia G, Werner HJ (2009) J Chem Phys 130:054105

    Google Scholar 

  76. Hochlaf M (2013) Phys Chem Chem Phys 15:9967

    CAS  Google Scholar 

  77. Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:084102

    Google Scholar 

  78. Weigend FA (2002) Phys Chem Chem Phys 4:4285

    CAS  Google Scholar 

  79. Hättig C (2005) Phys Chem Chem Phys 7:59

    Google Scholar 

  80. Klopper W (2001) Mol Phys 99:481

    CAS  Google Scholar 

  81. Yousaf KE, Peterson KA (2008) Chem Phys 129:184108

    Google Scholar 

  82. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718

    CAS  Google Scholar 

  83. Peterson KA, Dunning TH (2002) J Chem Phys 117:10548

    CAS  Google Scholar 

  84. Dunning TH (1989) J Chem Phys 90:1007

    CAS  Google Scholar 

  85. Douglas M, Kroll NM (1974) Ann Phys 82:89

    Google Scholar 

  86. Jansen G, Hess BA (1989) Phys Rev A 39:6016

    Google Scholar 

  87. de Jong WA, Harrison RJ, Dixon DA (2001) J Chem Phys 114:48

    Google Scholar 

  88. Knowles PJ, Werner HJ (1985) Chem Phys Lett 115:259

    CAS  Google Scholar 

  89. Werner HJ, Knowles PJ (1985) J Chem Phys 82:5053

    CAS  Google Scholar 

  90. Werner HJ, Knowles PJ (1988) J Chem Phys 89:5803

    CAS  Google Scholar 

  91. Knowles PJ, Werner HJ (1988) Chem Phys Lett 145:514

    CAS  Google Scholar 

  92. Sobolewski AL, Adamowicz L (1996) J Phys Chem 100:3933

    CAS  Google Scholar 

  93. Sobolewski AL, Adamowicz L (1996) Chem Phys 213:193

    CAS  Google Scholar 

  94. Hammoutène D, Hochlaf M, Ciofini I, Adamo C (2010) Int J Quant Chem 110:498

    Google Scholar 

  95. Mahjoub A, Hochlaf M, Poisson L, Nieuwjaer N, Lecomte F, Schermann JP, Grégoire G, Manil B, Garcia GA, Nahon L (2011) ChemPhysChem 12:1822

    CAS  Google Scholar 

  96. Ben Messaouda M, Abderrabba M, Mahjoub A, Chambaud G, Hochlaf M (2012) Comput Theor Chem 990:94

    CAS  Google Scholar 

  97. Mahjoub A, Hochlaf M, Garcia GA, Nahon L, Poisson L (2012) J Phys Chem A 116:8706

    CAS  Google Scholar 

  98. Pan Y, Lau KC, Poisson L, Garcia GA, Nahon L, Hochlaf M (2013) J Phys Chem A 117:8095

    CAS  Google Scholar 

  99. Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61

    CAS  Google Scholar 

  100. Finley J, Malmqvist P, Roos BO, Serrano-Andrès L (1998) Chem Phys Lett 288:299

    CAS  Google Scholar 

  101. Celani P, Stoll H, Werner HJ, Knowles PJ (2004) Mol Phys 102:2369

    CAS  Google Scholar 

  102. Celani P, Werner HJ (2003) J Chem Phys 119:5044

    CAS  Google Scholar 

  103. Hudock HR, Levine BG, Thompson AL, Satzger H, Townsend D, Gador N, Ullrich S, Stolow A, Martinez TJ (2007) J Phys Chem A 111:8500

    CAS  Google Scholar 

  104. Poisson L, Nandi D, Soep B, Hochlaf M, Boggio-Pasqua M, Mestdagh JM (2014) Phys Chem Chem Phys 16:581

    CAS  Google Scholar 

  105. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454

    CAS  Google Scholar 

  106. Furche F, Ahlrichs R (2002) J Chem Phys 117:7433

    CAS  Google Scholar 

  107. von Niessen W, Schirmer J, Cederbaum LS (1984) Comput Phys Rep 1:57

    Google Scholar 

  108. Schirmer J, Cederbaum LS, Walter O (1983) Phys Rev A 28:1237

    CAS  Google Scholar 

  109. Schirmer J, Angonoa G (1989) J Chem Phys 91:1754

    CAS  Google Scholar 

  110. Potts AW, Holland DMP, Trofimov AB, Schirmer J, Karlsson L, Siegbahn K (2003) J Phys B At Mol Opt Phys 36:3129

    CAS  Google Scholar 

  111. Cederbaum LS, Domcke W, Schirmer J, von Niessen W (1986) Adv Chem Phys 65:115

    CAS  Google Scholar 

  112. Schirmer J, Cederbaum LS, Walter O (1983) Phys Rev A 28:1237

    Google Scholar 

  113. Mertins F, Schirmer J (1996) Phys Rev A53:2140

    Google Scholar 

  114. Schirmer J, Mertins F (1996) Int J Quantum Chem 58:329

    CAS  Google Scholar 

  115. Pieniazek PA, Arnstein SA, Bradforth SE, Krylov AI, Sherrill CD (2007) J Chem Phys 127:164110

    Google Scholar 

  116. Pal S, Rittby M, Bartlett RJ, Sinha D, Mukherjee D (1987) Chem Phys Lett 137:273

    CAS  Google Scholar 

  117. Stanton JF, Gauss J (1994) J Chem Phys 101:8938

    CAS  Google Scholar 

  118. Kamiya M, Hirata SJ (2006) Chem Phys 125:074111

    Google Scholar 

  119. Pieniazek PA, Bradforth SE, Krylov AI (2008) J Chem Phys 129:074104

    Google Scholar 

  120. Golubeva AA, Pieniazek PA, Krylov AI (2009) J Chem Phys 130:124113

    Google Scholar 

  121. Wei CY, Yu WS, Chou PT, Hung FT, Chang CP, Lin TC (1998) J Phys Chem B 102:1053

    CAS  Google Scholar 

  122. Ramos AF, Smedarchina Z, Zgierski MZ (2000) J Chem Phys 113:2662

    Google Scholar 

  123. Gerega A, Lapinski L, Nowak MJ, Furmanchuk A, Leszczynski J (2007) J Phys Chem A 111:4934

    CAS  Google Scholar 

  124. Garcia GA, Soldi-Lose H, Nahon L (2009) Rev Sci Instrum 80:023102

    Google Scholar 

  125. Trikoupis MA, Gerbaux P, Lavorato DJ, Flammang R, Terlouw JK (2002) Int J Mass Spectrom 217:1

    CAS  Google Scholar 

  126. Stefanovic D, Grutzmacher HF (1974) Org Mass Spectrom 9:1052

    CAS  Google Scholar 

  127. Cook MJ, El-Abbady S, Katritzky AR, Guimon C, Pfister-Guillouzo GJ (1977) Chem Soc Perkin Trans 2:1652

    Google Scholar 

  128. Trembreull R, Sin CH, Pang HM, Lubman DM (1985) Anal Chem 57:2911

    Google Scholar 

  129. Ozeki H, Cockett MCR, Okuyama K, Takahashi M, Kimura K (1995) J Phys Chem 99:8608

    CAS  Google Scholar 

  130. Lee D, Baek SJ, Choi KW, Choi YS, Kim SK (2002) Bull Korean Chem Soc 23:277

    CAS  Google Scholar 

  131. Potapov VK, Filyugina AD, Shigorin DN, Ozerova GA (1968) Dokl Akad Nauk SSSR 180:398

    CAS  Google Scholar 

  132. Treschanke L, Rademacher P (1985) J Mol Struct (Theochem) 122:35

    Google Scholar 

  133. Treschanke L, Rademacher P (1985) J Mol Struct 122:47

    Google Scholar 

  134. Rejnek J, Hanus M, Kabeláč M, Ryjáček F, Hobza P (2005) Phys Chem Chem Phys 7:2006

    CAS  Google Scholar 

  135. Choi KW, Lee JH, Kim SK (2005) J Am Chem Soc 127:15674

    CAS  Google Scholar 

  136. Majdi Y, Garcia GA, Nahon L, Schwell M, Poisson L, Hochlaf M Manuscript in preparation

    Google Scholar 

  137. Wang S, Schaefer HF III (2006) J Chem Phys 124:044303

    Google Scholar 

  138. Guerra CF, Bickelhaupt FM, Saha S, Wang F (2006) J Phys Chem A 110:4012

    CAS  Google Scholar 

  139. Hanus M, Kabelàc M, Rejnek J, Ryjacek F, Hobza P (2004) J Phys Chem B 108:2087

    CAS  Google Scholar 

  140. Piacenza M, Grimme S (2004) J Comput Chem 25:83

    CAS  Google Scholar 

  141. Plützer C, Nir E, de Vries MS, Kleinermanns K (2001) Phys Chem Chem Phys 3:5466

    Google Scholar 

  142. Nir E, Plützer C, Kleinermanns K, de Vries MS (2002) Eur Phys J D 20:317

    CAS  Google Scholar 

  143. Hush NS, Cheung AS (1975) Chem Phys Lett 34:11

    CAS  Google Scholar 

  144. Lin J, Yu C, Peng S, Akiyama I, Li L, Li KL, LeBreton PR (1980) J Am Chem Soc 102:4627

    CAS  Google Scholar 

  145. Satzger H, Townsend D, Stolow A (2006) Chem Phys Lett 430:144

    CAS  Google Scholar 

  146. Orlov VM, Smirnov AN, Varshavsky YM (1976) Tetrahedron Lett 17:4377

    Google Scholar 

  147. Roca-Sanjuan D, Rubio M, Merchan M, Serrano-Andrés LJ (2006) J Chem Phys 125:084302

    Google Scholar 

  148. Cauët E, Dehareng D, Liévin L (2006) J Phys Chem A 110:9200

    Google Scholar 

  149. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2000) Int J Quantum Chem 80:831

    CAS  Google Scholar 

  150. Dolgounitcheva O, Zakrzewski VG, Ortiz JV (2009) J Phys Chem A 113:14630

    CAS  Google Scholar 

  151. Colson AO, Besler B, Close DM, Sevilla MD (1992) J Phys Chem 96:661

    CAS  Google Scholar 

  152. Wetmore SD, Boyd RJ, Eriksson LA (1998) J Phys Chem B 102:10602

    CAS  Google Scholar 

  153. Reynisson J, Steenken S (2002) Phys Chem Chem Phys 4:527

    CAS  Google Scholar 

  154. Verkin BI, Sukodub LF, Yanson IK (1976) Dokl Akad Nauk SSSR 228:1452

    CAS  Google Scholar 

  155. Kim SK, Lee W, Herschbach DR (1996) J Phys Chem 100:7933

    CAS  Google Scholar 

  156. Schwell M, Jochims HW, Baumgärtel H, Dulieu F, Leach S (2006) Planet Space Sci 54:1073

    CAS  Google Scholar 

  157. Pilling S, Lago AF, Coutinho LH, de Castilho RB, de Souza GGB, Naves de Brito A (2007) Rapid Commun Mass Spectrom 21:3646

    Google Scholar 

  158. Zavilopulo AN, Shepnik OB, Agafanova AS (2009) J Phys B At Mol Opt Phys 42:025101

    Google Scholar 

  159. Hanus M, Ryjáček F, Kabeláč M, Kubar T, Bogdan TV, Trygubenko SA, Hobza P (2003) J Am Chem Soc 125:7678

    Google Scholar 

Download references

Acknowledgements

We thank Sydney Leach for continuing enthusiastic support and for a critical review of the manuscript prior to submission. We would like to thank G. Chambaud, A. Mahjoub, D. Hammoutène, C. Adamo, I. Ciofini, M. Ben Messaouda, M. Abderrabba, Y. Pan, and K.C. Lau for their work on the theoretical investigations of NABs and analogues. L. Poisson, F. Gaie-Levrel, G.A. Garcia, L. Nahon, D. Touboul, J.F. Gil, J.C. Poully, J.P. Schermann, N. Nieuwjaer, F. Lecomte, B. Manil, G. Grégoire, and C. Desfrançois are acknowledged for their work on the photoionization project at the SOLEIL synchrotron. M.S. wishes to thank M.C. Gazeau, Y. Bénilan, N. Fray, and N. Champion for their fervent participation in the photoionization projects led by us at SOLEIL and BESSY synchrotrons. We are indebted to the general technical staff of Synchrotron SOLEIL for running the facility. We would like to acknowledge financial support from the French National programs Physique et Chimie du Milieu Interstellaire (PCMI; CNRS-INSU) and Environnements planétaires et origines de la Vie (EPOV, CNRS). M.H. would like to acknowledge financial support from DGRST-CNRS for the France-Tunisia exchange program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwell, M., Hochlaf, M. (2014). Photoionization Spectroscopy of Nucleobases and Analogues in the Gas Phase Using Synchrotron Radiation as Excitation Light Source. In: Barbatti, M., Borin, A., Ullrich, S. (eds) Photoinduced Phenomena in Nucleic Acids I. Topics in Current Chemistry, vol 355. Springer, Cham. https://doi.org/10.1007/128_2014_550

Download citation

Publish with us

Policies and ethics