Skip to main content

General Computational Algorithms for Ab Initio Crystal Structure Prediction for Organic Molecules

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 345))

Abstract

The prediction of the possible crystal structure(s) of organic molecules is an important activity for the pharmaceutical and agrochemical industries, among others, due to the prevalence of crystalline products. This chapter considers the general requirements that crystal structure prediction (CSP) methodologies need to fulfil in order to be able to achieve reliable predictions over a wide range of organic systems. It also reviews the current status of a multistage CSP methodology that has recently proved successful for a number of systems of practical interest. Emphasis is placed on recent developments that allow a reconciliation of conflicting needs for, on the one hand, accurate evaluation of the energy of a proposed crystal structure and on the other hand, comprehensive search of the energy landscape for the reliable identification of all low-energy minima. Finally, based on the experience gained from this work, current limitations and opportunities for further research in this area are identified. We also consider issues relating to the use of empirical models derived from experimental data in conjunction with ab initio CSP.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    See Sect. 3.5.2 for details of the current implementation.

  2. 2.

    In fact, the algorithms also recognise a third class of CDFs which can be fixed at user-provided values (e.g. in order to exploit a priori available experimental information in performing more targeted searches). However, in the interests of clarity of presentation, we omit this complication from the mathematical descriptions provided in this chapter.

  3. 3.

    The actual implementations also include the +pV term in the objective function which, therefore, corresponds to lattice enthalpy. However, in the interests of simplicity of presentation, this is omitted here and in subsequent discussion.

  4. 4.

    As already mentioned, these LAMs can be stored in persistent LAM databases to be re-used in later calculations, such as those required for the subsequent refinement stage.

  5. 5.

    Including the +pV term.

  6. 6.

    In the case of our CSP methodology, this is the computed value of the lattice enthalpy (as opposed to the true lattice enthalpy) of the crystal structure.

  7. 7.

    Either as part of the energy minimisation calculations or in the form of an a posteriori adjustment of the type discussed in Sect. 4.3.

Abbreviations

API:

Active pharmaceutical ingredient

CCDC:

Cambridge Crystallographic Data Centre

CDF:

Conformational degree of freedom

CSD:

Cambridge Structural Database

CSP:

Crystal structure prediction

DFT:

Density functional theory

DFT+D:

Dispersion corrected density functional theory

LAM:

Local approximate model

QM:

Quantum mechanical

rmsd15 :

Root mean square deviation of the 15-molecule coordination sphere

References

  1. Storey RA, Ymén I (2011) Solid state characterization of pharmaceuticals. Wiley, Chichester

    Book  Google Scholar 

  2. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18:859–866

    Article  CAS  Google Scholar 

  3. Lommerse JPM, Motherwell WDS, Ammon HL, Dunitz JD, Gavezzotti A, Hofmann DWM, Leusen FJJ, Mooij WTM, Price SL, Schweizer B, Schmidt MU, van Eijck BP, Verwer P, Williams DE (2000) A test of crystal structure prediction of small organic molecules. Acta Crystallogr B 56:697–714

    Article  CAS  Google Scholar 

  4. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM, Braun DE, Cruz-Cabeza AJ, Day GM, Della Valle RG, Desiraju GR, van Eijck BP, Facelli JC, Ferraro MB, Grillo D, Habgood M, Hofmann DWM, Hofmann F, Jose KVJ, Karamertzanis PG, Kazantsev AV, Kendrick J, Kuleshova LN, Leusen FJJ, Maleev AV, Misquitta AJ, Mohamed S, Needs RJ, Neumann MA, Nikylov D, Orendt AM, Pal R, Pantelides CC, Pickard CJ, Price LS, Price SL, Scheraga HA, van de Streek J, Thakur TS, Tiwari S, Venuti E, Zhitkov IK (2011) Towards crystal structure prediction of complex organic compounds—a report on the fifth blind test. Acta Crystallogr B 67:535–551

    Article  CAS  Google Scholar 

  5. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL, Boerrigter SXM, Tan JS, Della Valle RG, Venuti E, Jose J, Gadre SR, Desiraju GR, Thakur TS, van Eijck BP, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Neumann MA, Leusen FJJ, Kendrick J, Price SL, Misquitta AJ, Karamertzanis PG, Welch GWA, Scheraga HA, Arnautova YA, Schmidt MU, van de Streek J, Wolf AK, Schweizer B (2009) Significant progress in predicting the crystal structures of small organic molecules – a report on the fourth blind test. Acta Crystallogr B 65:107–125

    Article  CAS  Google Scholar 

  6. Day GM, Motherwell WDS, Ammon HL, Boerrigter SXM, Della Valle RG, Venuti E, Dzyabchenko A, Dunitz JD, Schweizer B, van Eijck BP, Erk P, Facelli JC, Bazterra VE, Ferraro MB, Hofmann DWM, Leusen FJJ, Liang C, Pantelides CC, Karamertzanis PG, Price SL, Lewis TC, Nowell H, Torrisi A, Scheraga HA, Arnautova YA, Schmidt MU, Verwer P (2005) A third blind test of crystal structure prediction. Acta Crystallogr B 61:511–527

    Article  CAS  Google Scholar 

  7. Motherwell WDS, Ammon HL, Dunitz JD, Dzyabchenko A, Erk P, Gavezzotti A, Hofmann DWM, Leusen FJJ, Lommerse JPM, Mooij WTM, Price SL, Scheraga H, Schweizer B, Schmidt MU, van Eijck BP, Verwer P, Williams DE (2002) Crystal structure prediction of small organic molecules: a second blind test. Acta Crystallogr B 58:647–661

    Article  Google Scholar 

  8. Ismail SZ, Anderton CL, Copley RCB, Price LS, Price SL (2013) Evaluating a crystal energy landscape in the context of industrial polymorph screening. Crystal Growth Design 13:2396–2406

    Article  CAS  Google Scholar 

  9. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC, Price SL, Galek PTA, Day GM, Cruz-Cabeza AJ (2011) Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. Int J Pharm 418:168–178

    Article  CAS  Google Scholar 

  10. Kendrick J, Stephenson GA, Neumann MA, Leusen FJJ (2013) Crystal structure prediction of a flexible molecule of pharmaceutical interest with unusual polymorphic behavior. Crystal Growth Design 13:581–589

    Article  CAS  Google Scholar 

  11. Fakes MG, Vakkalagadda BJ, Qian F, Desikan S, Gandhi RB, Lai C, Hsieh A, Franchini MK, Toale H, Brown J (2009) Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm 370:167–174

    Article  CAS  Google Scholar 

  12. Campeta AM, Chekal BP, Abramov YA, Meenan PA, Henson MJ, Shi B, Singer RA, Horspool KR (2010) Development of a targeted polymorph screening approach for a complex polymorphic and highly solvating API. J Pharm Sci 99:3874–3886

    CAS  Google Scholar 

  13. Sakai K, Sakurai K, Nohira H, Tanaka R, Hirayama N (2004) Practical resolution of 1-phenyl-2-(4-methylphenyl)ethylamine using a single resolving agent controlled by the dielectric constant of the solvent. Tetrahedron: Asymmetry 15:3405–3500

    Google Scholar 

  14. Friščić T, Lancaster RW, Fábián L, Karamertzanis PG (2010) Tunable recognition of the steroid Α-face by adjacent Π-electron density. Proc Natl Acad Sci 107:13216–13221

    Article  Google Scholar 

  15. Uzoh OG, Cruz-Cabeza AJ, Price SL (2012) Is the fenamate group a polymorphophore? Contrasting the crystal energy landscapes of fenamic and tolfenamic acids. Crystal Growth Design 12:4230–4239

    Article  CAS  Google Scholar 

  16. Arlin J-B, Price LS, Price SL, Florence AJ (2011) A strategy for producing predicted polymorphs: catemeric carbamazepine form V. Chem Commun 47:7074–7076

    Article  CAS  Google Scholar 

  17. Price S (2013) Why don’t we find more polymorphs? Acta Crystallogr B 69:313–328

    Article  CAS  Google Scholar 

  18. Day GM (2010) Computational crystal structure prediction: towards in silico solid form screening. In: Tiekink ERT, Vittal J, Zaworotko M (eds) Organic crystal engineering: frontiers in crystal engineering. Wiley, Chichester, pp 43–66

    Google Scholar 

  19. Day GM (2011) Current approaches to predicting molecular organic crystal structures. Crystallogr Rev 17:3–52

    Article  Google Scholar 

  20. Day GM (2012) Crystal structure prediction. In: Steed JW, Gale PA (eds) Supramolecular materials chemistry. Wiley, Chichester, pp 2905–2926

    Google Scholar 

  21. Kendrick J, Leusen FJJ, Neumann MA, van de Streek J (2011) Progress in crystal structure prediction. Chem Eur J 17:10736–10744

    Article  CAS  Google Scholar 

  22. Oganov AR (2010) Modern methods of crystal structure prediction. Wiley-VCH, Berlin

    Google Scholar 

  23. Price SL (2008) Computational prediction of organic crystal structures and polymorphism. Int Rev Phys Chem 27:541–568

    Article  CAS  Google Scholar 

  24. Price SL (2008) Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc Chem Res 42:117–126

    Article  Google Scholar 

  25. Price SL (2008) From crystal structure prediction to polymorph prediction: interpreting the crystal energy landscape. Phys Chem Chem Phys 10:1996–2009

    Article  CAS  Google Scholar 

  26. Karamertzanis PG, Pantelides CC (2005) Ab initio crystal structure prediction—I. Rigid molecules. J Comput Chem 26:304–324

    Article  CAS  Google Scholar 

  27. Karamertzanis PG, Pantelides CC (2007) Ab initio crystal structure prediction. II. Flexible molecules. Mol Phys 105:273–291

    Article  CAS  Google Scholar 

  28. Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC (2011) Efficient handling of molecular flexibility in lattice energy minimization of organic crystals. J Chem Theory Comput 7:1998–2016

    Article  CAS  Google Scholar 

  29. Baias M, Widdifield CM, Dumez J-N, Thompson HPG, Cooper TG, Salager E, Bassil S, Stein RS, Lesage A, Day GM, Emsley L (2013) Powder crystallography of pharmaceutical materials by combined crystal structure prediction and solid-state 1H NMR spectroscopy. Phys Chem Chem Phys 15:8069–8080

    Article  CAS  Google Scholar 

  30. Bhardwaj RM, Price LS, Price SL, Reutzel-Edens SM, Miller GJ, Oswald IDH, Johnston BF, Florence AJ (2013) Exploring the experimental and computed crystal energy landscape of olanzapine. Crystal Growth Design 13:1602–1617

    Article  CAS  Google Scholar 

  31. Eddleston MD, Hejczyk KE, Bithell EG, Day GM, Jones W (2013) Determination of the crystal structure of a new polymorph of theophylline. Chem Eur J 19:7883–7888

    Article  CAS  Google Scholar 

  32. Eddleston MD, Hejczyk KE, Bithell EG, Day GM, Jones W (2013) Polymorph identification and crystal structure determination by a combined crystal structure prediction and transmission electron microscopy approach. Chem Eur J 19:7874–7882

    Article  CAS  Google Scholar 

  33. Habgood M (2012) Solution and nanoscale structure selection: implications for the crystal energy landscape of tetrolic acid. Phys Chem Chem Phys 14:9195–9203

    Article  CAS  Google Scholar 

  34. Habgood M, Lancaster RW, Gateshki M, Kenwright AM (2013) The amorphous form of salicylsalicylic acid: experimental characterization and computational predictability. Crystal Growth Design 13:1771–1779

    Article  CAS  Google Scholar 

  35. Spencer J, Patel H, Deadman JJ, Palmer RA, Male L, Coles SJ, Uzoh OG, Price SL (2012) The unexpected but predictable tetrazole packing in flexible 1-benzyl-1H-tetrazole. CrystEngComm 14:6441–6446

    Article  CAS  Google Scholar 

  36. Vasileiadis M, Kazantsev AV, Karamertzanis PG, Adjiman CS, Pantelides CC (2012) The polymorphs of ROY: application of a systematic crystal structure prediction technique. Acta Crystallogr B 68:677–685

    Article  CAS  Google Scholar 

  37. Issa N, Barnett SA, Mohamed S, Braun DE, Copley RCB, Tocher DA, Price SL (2012) Screening for cocrystals of succinic acid and 4-aminobenzoic acid. CrystEngComm 14:2454–2464

    Article  CAS  Google Scholar 

  38. Karamertzanis PG, Kazantsev AV, Issa N, Welch GWA, Adjiman CS, Pantelides CC, Price SL (2009) Can the formation of pharmaceutical cocrystals be computationally predicted? 2. Crystal structure prediction. J Chem Theory Comput 5:1432–1448

    Article  CAS  Google Scholar 

  39. Wu H, Habgood M, Parker JE, Reeves-McLaren N, Cockcroft JK, Vickers M, West AR, Jones AG (2013) Crystal structure determination by combined synchrotron powder X-ray diffraction and crystal structure prediction: 1: 1 L-ephedrine D-tartrate. CrystEngComm 15:1853–1859

    Article  CAS  Google Scholar 

  40. Braun DE, Ardid-Candel M, D’Oria E, Karamertzanis PG, Arlin J-B, Florence AJ, Jones AG, Price SL (2011) Racemic naproxen: a multidisciplinary structural and thermodynamic comparison with the enantiopure form. Crystal Growth Design 11:5659–5669

    Article  CAS  Google Scholar 

  41. Habgood M (2013) Analysis of enantiospecific and diastereomeric cocrystal systems by crystal structure prediction. Crystal Growth & Design 13:4549–4558

    Google Scholar 

  42. Braun DE, Bhardwaj RM, Florence AJ, Tocher DA, Price SL (2012) Complex polymorphic system of gallic acid—five monohydrates, three anhydrates, and over 20 solvates. Crystal Growth Design 13:19–23

    Article  Google Scholar 

  43. Braun DE, Karamertzanis PG, Price SL (2011) Which, if any, hydrates will crystallise? Predicting hydrate formation of two dihydroxybenzoic acids. Chem Commun 47:5443–5445

    Article  CAS  Google Scholar 

  44. Gelbrich T, Braun DE, Ellern A, Griesser UJ (2013) Four polymorphs of methyl paraben: structural relationships and relative energy differences. Crystal Growth Design 13:1206–1217

    Article  CAS  Google Scholar 

  45. Admiraal G, Eikelenboom JC, Vos A (1982) Structures of the triclinic and monoclinic modifications of (2-oxo-1-pyrrolidinyl)acetamide. Acta Crystallogr B 38:2600–2605

    Article  Google Scholar 

  46. Gavezzotti A, Filippini G (1995) Polymorphic forms of organic-crystals at room conditions – thermodynamic and structural implications. J Am Chem Soc 117:12299–12305

    Article  CAS  Google Scholar 

  47. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Zeitschrift fuer Kristallographie 220:567–570

    CAS  Google Scholar 

  48. Neumann MA, Perrin MA (2005) Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction. J Phys Chem B 109:15531–15541

    Article  CAS  Google Scholar 

  49. Kim HS, Jeffrey GA (1969) The crystal structure of xylitol. Acta Crystallogr B 25:2607–2613

    Article  CAS  Google Scholar 

  50. Karamertzanis PG, Pantelides CC (2004) Optimal site charge models for molecular electrostatic potentials. Mol Simulat 30:413–436

    Article  CAS  Google Scholar 

  51. Stone AJ (1996) The theory of intermolecular forces. Clarendon, Oxford

    Google Scholar 

  52. Stone AJ, Alderton M (1985) Distributed multipole analysis – methods and applications. Mol Phys 56:1047–1064

    Article  CAS  Google Scholar 

  53. Mooij WTM, van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Eijck BP (1999) Transferable ab initio intermolecular potentials. 1. Derivation from methanol dimer and trimer calculations. J Phys Chem A 103:9872–9882

    Article  CAS  Google Scholar 

  54. Cooper TG, Hejczyk KE, Jones W, Day GM (2008) Molecular polarization effects on the relative energies of the real and putative crystal structures of valine. J Chem Theory Comput 4:1795–1805

    Article  CAS  Google Scholar 

  55. Misquitta AJ, Welch GWA, Stone AJ, Price SL (2008) A first principles prediction of the crystal structure of C6Br2ClFH2. Chem Phys Lett 456:105–109

    Article  CAS  Google Scholar 

  56. Stone AJ, Misquitta AJ (2007) Atom-atom potentials from ab initio calculations. Int Rev Phys Chem 26:193–222

    Article  CAS  Google Scholar 

  57. Beyer T, Price SL (2000) Dimer or catemer? Low-energy crystal packings for small carboxylic acids. J Phys Chem B 104:2647–2655

    Article  CAS  Google Scholar 

  58. Coombes DS, Price SL, Willock DJ, Leslie M (1996) Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study. J Phys Chem 100:7352–7360

    Article  CAS  Google Scholar 

  59. Cox SR, Hsu LY, Williams DE (1981) Nonbonded potential function models for the crystalline oxohydrocarbons. Acta Crystallogr A 37:293–301

    Article  Google Scholar 

  60. Williams DE (1965) Repulsion center of a bonded hydrogen atom. J Chem Phys 43:4424–4426

    Article  CAS  Google Scholar 

  61. Williams DE (1999) Improved intermolecular force field for crystalline hydrocarbons containing four- or three-coordinated carbon. J Mol Struct 485–486:321–347

    Article  Google Scholar 

  62. Williams DE (2001) Improved intermolecular force field for molecules containing H, C, N, and O atoms, with application to nucleoside and peptide crystals. J Comput Chem 22:1154–1166

    Article  CAS  Google Scholar 

  63. Williams DE, Cox SR (1984) Nonbonded potentials for azahydrocarbons: the importance of the coulombic interaction. Acta Crystallogr B 40:404–417

    Article  Google Scholar 

  64. Ewald PP (1921) Die Berechnung Optischer Und Elektrostatischer Gitterpotentiale. Annalen der Physik (Berlin) 369:253–287

    Article  Google Scholar 

  65. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  66. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York

    Google Scholar 

  67. Yu L (2010) Polymorphism in molecular solids: an extraordinary system of red, orange, and yellow crystals. Acc Chem Res 43:1257–1266

    Article  CAS  Google Scholar 

  68. Day GM, Motherwell WDS, Jones W (2007) A strategy for predicting the crystal structures of flexible molecules: the polymorphism of phenobarbital. Phys Chem Chem Phys 9:1693–1704

    Article  CAS  Google Scholar 

  69. Stone AJ (2005) Distributed multipole analysis: stability for large basis sets. J Chem Theory Comput 1:1128–1132

    Article  CAS  Google Scholar 

  70. Gavezzotti A (1997) Theoretical aspects and computer modeling of the molecular solid state. Wiley, Chichester

    Google Scholar 

  71. van Mourik T, Karamertzanis PG, Price SL (2006) Molecular conformations and relative stabilities can be as demanding of the electronic structure method as intermolecular calculations. J Phys Chem A 112:8–12

    Article  Google Scholar 

  72. Karamertzanis PG, Price SL (2006) Energy minimization of crystal structures containing flexible molecules. J Chem Theory Comput 2:1184–1199

    Article  CAS  Google Scholar 

  73. Brodersen S, Wilke S, Leusen FJJ, Engel G (2003) A study of different approaches to the electrostatic interaction in force field methods for organic crystals. Phys Chem Chem Phys 5:4923–4931

    Article  CAS  Google Scholar 

  74. Day GM, Motherwell WDS, Jones W (2005) Beyond the isotropic atom model in crystal structure prediction of rigid molecules: atomic multipoles versus point charges. Crystal Growth Design 5:1023–1033

    Article  CAS  Google Scholar 

  75. Mooij WTM, Leusen FJJ (2001) Multipoles versus charges in the 1999 crystal structure prediction test. Phys Chem Chem Phys 3:5063–5066

    Article  CAS  Google Scholar 

  76. Buckingham RA (1938) The classical equation of state of gaseous helium, neon and argon. Proc R Soc Lond A Math Phys Sci 168:264–283

    Article  CAS  Google Scholar 

  77. Sobol’ IM (1967) On the distribution of points in a cube and the approximate evaluation of integrals. Comp Math Math Phys 7:86–112

    Article  Google Scholar 

  78. Spek AL (2003) PLATON, a multipurpose crystallographic tool. Utrecht University, The Netherlands

    Google Scholar 

  79. Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12:8478–8490

    Article  CAS  Google Scholar 

  80. Willock DJ, Price SL, Leslie M, Catlow CRA (1995) The relaxation of molecular crystal structures using a distributed multipole electrostatic model. J Comput Chem 16:628–647

    Article  CAS  Google Scholar 

  81. Chisholm JA, Motherwell WDS (2005) COMPACK: a program for identifying crystal structure similarity using distances. J Appl Crystallogr 38:228–231

    Article  Google Scholar 

  82. Vasileiadis M (2013) Calculation of the free energy of crystalline solids. PhD thesis, Imperial College London, London

    Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the major contributions made by P.G. Karamertzanis, M. Vasileiadis and M. Habgood to the fundamentals and implementation of CrystalPredictor and CrystalOptimizer. We are grateful to Professor S.L. Price for many useful discussions and collaboration, and for supplying the DMACRYS code for use within CrystalOptimizer. Financial support for the work reported here was provided by the United Kingdom’s Engineering & Physical Sciences Research Council (EPSRC) under grants EP/E016340, EP/J003840/1 and EP/J014958/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos C. Pantelides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pantelides, C.C., Adjiman, C.S., Kazantsev, A.V. (2014). General Computational Algorithms for Ab Initio Crystal Structure Prediction for Organic Molecules. In: Atahan-Evrenk, S., Aspuru-Guzik, A. (eds) Prediction and Calculation of Crystal Structures. Topics in Current Chemistry, vol 345. Springer, Cham. https://doi.org/10.1007/128_2013_497

Download citation

Publish with us

Policies and ethics