Skip to main content

Carbon Nanotubes in Tissue Engineering

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 348))

Abstract

As a result of their peculiar features, carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kinds of tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BMP:

Bone morphogenetic protein

BP:

Bucky paper

CNFs:

Carbon nanofibres

CNT:

Carbon nanotube

DNA:

Deoxyribonucleic acid

DRG:

Dorsal root ganglia

ECM:

Extracellular matrix

Hap:

Hydroxyapatite

HIV:

Human immunodeficiency virus

MEA:

Multielectrode array

MWNT:

Multiwalled carbon nanotube

NT-3:

Neurotrophin3

PLCL:

Poly (lactide-co-ε-caprolactone)

PLGA:

Poly (lactic-co-glycolic acid)

rhBMP-2:

Recombinant human bone morphogenetic protein-2

RNA:

Ribonucleic acid

SWNT:

Single walled carbon nanotube

References

  1. Kam NWS, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 45:577–581

    Article  CAS  Google Scholar 

  2. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113

    Article  CAS  Google Scholar 

  3. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci 103(9):3357–3362

    Article  CAS  Google Scholar 

  4. Lacerda L, Ali-Boucetta H, Herrero MA, Pastorin G, Bianco A, Prato M, Kostarelos K (2008) Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3(2):149–161

    Article  CAS  Google Scholar 

  5. Lacerda L, Herrero MA, Venner K, Bianco A, Prato M, Kostarelos K (2008) Carbon-nanotube shape and individualization critical for renal excretion. Small 4(8):1130–1132

    Article  CAS  Google Scholar 

  6. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627–633

    Article  CAS  Google Scholar 

  7. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM (2011) A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine 6:2963–2979

    CAS  Google Scholar 

  8. Fan H, Zhang I, Chen X, Zhang L, Wang H, Da Fonseca A, Manuel ER, Diamond DJ, Raubitschek A, Badie B (2012) Intracerebral CpG immunotherapy with carbon nanotubes abrogates growth of subcutaneous melanomas in mice. Clin Cancer Res 18(20):5628–5638

    Article  CAS  Google Scholar 

  9. Chakravarty P, Marches R, Zimmerman NS, Swafford AD, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES (2008) Thermal ablation of tumor cells with carbon nanotubes. Proc Natl Acad Sci 105(25):8697–8702

    Article  CAS  Google Scholar 

  10. Karchemski F, Zucker D, Barenholz Y, Regev O (2012) Carbon nanotubes-liposomes conjugate as a platform for drug delivery into cells. J Control Release 160(2):339–345

    Article  CAS  Google Scholar 

  11. Liu Z, Winters M, Holodniy M, Dai H (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed Engl 46(12):2023–2027

    Article  CAS  Google Scholar 

  12. Herrero MA, Toma FM, Al-Jamal KT, Kostarelos K, Bianco A, Da Ros T, Bano F, Casalis L, Scoles G, Prato M (2009) Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 131(28):9843–9848

    Article  CAS  Google Scholar 

  13. Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z (2007) Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 7(10):2976–2980

    Article  CAS  Google Scholar 

  14. Liu M, Chen B, Xue Y, Huang J, Zhang L, Huang S, Li Q, Zhang Z (2011) Polyamidoamine-grafted multiwalled carbon nanotubes for gene delivery: synthesis, transfection and intracellular trafficking. Bioconjug Chem 22(11):2237–2243

    Article  CAS  Google Scholar 

  15. Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130(33):10856–10857

    Article  CAS  Google Scholar 

  16. Hilder TA, Hill JM (2008) Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys 8(3–4):258–261

    Article  Google Scholar 

  17. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48(7):1180–1189

    Article  CAS  Google Scholar 

  18. Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Scheinberg DA, McDevitt MR (2010) Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine 5:783–802

    CAS  Google Scholar 

  19. Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Role of carbon nanotubes in electroanalytical chemistry: a review. Anal Chim Acta 622(1–2):11–47

    Article  Google Scholar 

  20. ShiH XT, Nel AE, Yeh JI (2007) Coordinated biosensors – development of enhanced nanobiosensors for biological and medical applications. Nanomedicine 2(5):599–614

    Article  Google Scholar 

  21. Mahmoud KA, Luong JHT (2008) Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocene-peptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode. Anal Chem 80(18):7056–7062

    Article  CAS  Google Scholar 

  22. Dastagir T, Forzani ES, Zhang R, Amlani I, Nagahara LA, Tsui R, Tao N (2007) Electrical detection of hepatitis C virus RNA on single wall carbon nanotube-field effect transistors. Analyst 132(8):738–740

    Article  CAS  Google Scholar 

  23. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  Google Scholar 

  24. Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, Van Tassel PR (2010) Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale 2(9):1789–1794

    Article  CAS  Google Scholar 

  25. Taton TA (2001) Nanotechnology: boning up on biology. Nature 412:491

    Article  CAS  Google Scholar 

  26. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res A 51:475–483

    Article  CAS  Google Scholar 

  27. Price RL, Ellison K, Haberstroh KM, Webster TJ (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res A 70:129–138

    Article  Google Scholar 

  28. Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R (2001) Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res A 59(3):499–506

    Article  Google Scholar 

  29. Shi G, Rouabhia M, Meng S, Zhang Z (2008) Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J Biomed Mater Res A 84(4):1026–1037

    Article  Google Scholar 

  30. Iijima S, Hichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  31. Yakobson B, Smalley R (1997) Fullerene nanotubes: C 1,000,000 and beyond some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family. Am Scientist 1997(85):324–337

    Google Scholar 

  32. Iijima S (2002) Carbon nanotubes: past, present, and future. Physica B 323(1–4):1–5

    Article  CAS  Google Scholar 

  33. Zanello LP, Zhao B, Hu H, Haddon RC (2006) Bone cell proliferation on carbon nanotubes. Nano Lett 6(3):562–567

    Article  CAS  Google Scholar 

  34. Usui Y, Aoki K, Narita N et al (2008) Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 4(2):240–246

    Article  CAS  Google Scholar 

  35. Liao S, Xu G, Wang W, Watari F, Cui F, Ramakrishna S, Chan CK (2007) Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomater 3(5):669–675

    Article  CAS  Google Scholar 

  36. Narita N, Kobayashi Y, Nakamura H et al (2009) Multiwalled carbon nanotubes specifically inhibit osteoclast differentiation and function. Nano Lett 9(4):1406–1413

    Article  CAS  Google Scholar 

  37. Venkatesan J, Ryu B, Sudha PN, Kim S-K (2012) Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Int J Biol Macromol 50(2):393–402

    Article  CAS  Google Scholar 

  38. Yildirim ED, Yin X, Nair K, Sun W (2008) Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res B Appl Biomater 87(2):406–414

    Article  Google Scholar 

  39. Sá M, Andrade V, Mendes R, Caliari M, Ladeira L, Silva E, Silva G, Corrêa-Júnior J, Ferreira A (2012) Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis. doi:10.1111/odi.12030

    Google Scholar 

  40. Mendes RM, Silva GA, Caliari MV, Silva EE, Ladeira LO, Ferreira AJ (2010) Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sci 87(7–8):215–222

    Article  CAS  Google Scholar 

  41. Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49(10):3284–3291

    Article  CAS  Google Scholar 

  42. Hirata E, Uo M, Nodasaka Y, Takita H, Ushijima N, Akasaka T, Watari F, Yokoyama A (2010) 3D collagen scaffolds coated with multiwalled carbon nanotubes: initial cell attachment to internal surface. J Biomed Mater Res B Appl Biomater 93(2):544–550

    Article  Google Scholar 

  43. Cheng Q, Rutledge K, Jabbarzadeh E (2013) Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann Biomed Eng 41(5):904–916. doi:10.1007/s10439-012-0728-8

    Article  Google Scholar 

  44. Singh MK, Gracio J, LeDuc P et al (2010) Integrated biomimetic carbon nanotube composites for in vivo systems. Nanoscale 2(12):2855–2863

    Article  CAS  Google Scholar 

  45. Shi X, Sitharaman B, Pham QP, Liang F, Wu K, Edward Billups W, Wilson LJ, Mikos AG (2007) Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials 28(28):4078–4090

    Article  CAS  Google Scholar 

  46. Verdejo R, Jell G, Safinia L, Bismarck A, Stevens MM, Shaffer MSP (2009) Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts. J Biomed Mater Res A 88(1):65–73

    Article  Google Scholar 

  47. Wang W, Watari F, Omori M, Liao S, Zhu Y, Yokoyama A, Uo M, Kimura H, Ohkubo A (2006) Mechanical properties and biological behavior of carbon nanotube/polycarbosilane composites for implant materials. J Biomed Mater Res B Appl Biomater 82B(1):223–230

    Article  Google Scholar 

  48. Shin US, Yoon IK, Lee GS, Jang WC, Knowles JC, Kim HW (2011) Carbon nanotubes in nanocomposites and hybrids with hydroxyapatite for bone replacements. J Tissue Eng 674287

    Google Scholar 

  49. Xiao Y, Gong T, Zhou S (2010) The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials 31(19):5182–5190

    Article  CAS  Google Scholar 

  50. Thompson BC, Moulton SE, Gilmore KJ, Higgins MJ, Whitten PG, Wallace GG (2009) Carbon nanotube biogels. Carbon 47(5):1282–1291

    Article  CAS  Google Scholar 

  51. Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1):94–102

    Article  CAS  Google Scholar 

  52. Sá M, Andrade V, Mendes R, Caliari M, Ladeira L, Silva E, Silva G, Corrêa-Júnior J, Ferreira A (2012) Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Dis. doi:10.1111/odi.12030

    Google Scholar 

  53. Panseri S, Cuhna C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F (2008) Electrospun micro-and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39–51

    Article  Google Scholar 

  54. Bradbury EJ, McMahon SB (2006) Spinal cord repair strategies: why do they work? Nature 7:644–653

    CAS  Google Scholar 

  55. Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14(3):175–182

    Article  CAS  Google Scholar 

  56. Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V (2005) Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B 109(10):4285–4289

    CAS  Google Scholar 

  57. Berry CC, Campbell G, Spadiccino A, Robertson M, Curtis ASG (2004) The influence of microscale topography on fibroblast attachment and motility. Biomaterials 25:5781–5788

    Article  CAS  Google Scholar 

  58. Sorkin R, Greenbaum A, David-Pur M, Anava S, Ayali A, Ben-Jacob E, Hanein Y (2009) Process entanglement as a neuronal anchorage mechanism to rough surfaces. Nanotechnology 20(1):015101

    Article  Google Scholar 

  59. Malarkey EB, Fisher KA, Bekyarova E, Liu W, Haddon RC, Parpura V (2009) Conductive single-walled carbon nanotube substrates modulate neuronal growth 2009. Nano Lett 9(1):264–268

    Article  CAS  Google Scholar 

  60. Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA, Baughman RH, Romero MI (2007) Robust cell migration and neuronal growth on pristine carbon nanotube sheets and yarns. J Biomater Sci Polym Ed 18(10):1245–1261

    Article  CAS  Google Scholar 

  61. Zhang X, Prasad S, Niyogi S, Morgan A, Ozkan M, Ozkan CS (2005) Guided neurite growth on patterned carbon nanotubes. Sens Actuators B Chem 106:843–850

    Article  CAS  Google Scholar 

  62. Cho Y, Borgens RB (2010) The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells. J Biomed Mater Res A 95(2):510–517

    Article  Google Scholar 

  63. Huang Y-C, Hsu S-H, Kuo W-C, Chang-Chien C-L, Cheng H, Huang Y-Y (2011) Effects of laminin-coated carbon nanotube chitosan fibers on guided neurite growth. J Biomed Mater Res A 99A(1):86–93

    Article  CAS  Google Scholar 

  64. Lewitus DY, Landers J, Branch JR, Smith KL, Callegari G, Kohn J, Neimark AV (2011) Biohybrid carbon nanotube/agarose fibers for neural tissue engineering. Adv Funct Mater 21:2624–2632

    Article  CAS  Google Scholar 

  65. Lee HJ, Yoon OJ, Kim DH, Jang YM, Kim HW, Lee WB, Lee NE, Sung S (2010) Neurite outgrowth on nanocomposite scaffolds synthesized from PLGA and carboxylated carbon nanotubes. Adv Eng Mater 11:B261–B266

    Article  Google Scholar 

  66. Jin GZ, Kim M, Shin US, Kim HW (2011) Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Neurosci Lett 501:10–14

    Article  CAS  Google Scholar 

  67. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5(6):1107–1110

    Article  CAS  Google Scholar 

  68. Cellot G, Cilia E, Cipollone S et al (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4:126–133

    Article  CAS  Google Scholar 

  69. Waters J, Schaefer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87:145–170

    Article  Google Scholar 

  70. Fabbro A, Villari A, Laishram J, Scaini D, Toma FM, Turco A, Prato M, Ballerini L (2012) Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano 6(3):2041–2055

    Article  CAS  Google Scholar 

  71. Khraiche ML, Jackson N, Muthuswamy J (2009) Early onset of electrical activity in developing neurons cultured on carbon nanotube immobilized microelectrodes. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology, Minneapolis (MN, US), pp 777–780

    Google Scholar 

  72. Shein M, Greenbaum A, Gabay T, Sorkin R, David-Pur M, Ben-Jacob E, Hanein Y (2009) Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays. Biomed Microdevices 11(2):495–501

    Article  CAS  Google Scholar 

  73. Shoval A, Adams C, David-Pur M, Shein M, Hanein Y, Sernagor E (2009) Carbon nanotube electrodes for effective interfacing with retinal tissue. Front Neuroeng 2:4

    Article  CAS  Google Scholar 

  74. Fabbro A, Cellot G, Prato M, Ballerini L (2011) Interfacing neurons with carbon nanotubes: (re)engineering neuronal signaling. Prog Brain Res 194:241–252

    Article  Google Scholar 

  75. Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C (2006) Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 17(2):391–397

    Article  CAS  Google Scholar 

  76. Martinelli V, Cellot G, Toma FM et al (2012) Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett 12(4):1831–1838

    Article  CAS  Google Scholar 

  77. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22

    Article  CAS  Google Scholar 

  78. Stout D, Basu B, Webster TJ (2011) Poly(lactic-co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater 7(8):3101–3112

    Article  CAS  Google Scholar 

  79. Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114

    Article  CAS  Google Scholar 

  80. Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE (2005) Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. Am J Physiol Heart Circ Physiol 288:H1620–H1626

    Article  CAS  Google Scholar 

  81. Mihardja SS, Sievers RE, Lee RJ (2008) The effect of polypyrrole on arteriogenesis in an acute rat infarct model. Biomaterials 29:4205–4210

    Article  CAS  Google Scholar 

  82. Roberts-Thomson KC, Kistler PM, Sanders P, Morton JB, Haqqani HM, Stevenson I, Vohra JK, Sparks PB, Kalman JM (2009) Fractionated atrial electrograms during sinus rhythm: relationship to age, voltage, and conduction velocity. Heart Rhythm 6:587–591

    Article  Google Scholar 

  83. Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Design 31:2406–2413

    Article  CAS  Google Scholar 

  84. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang X, Khademhosseini A (2013) Carbon nanotube embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7(3):2369–2380

    Article  CAS  Google Scholar 

  85. Koga H, Fujigaya T, Nakashima N, Nakazawa K (2011) Morphological and functional behaviors of rat hepatocytes cultured on single-walled carbon nanotubes. J Mater Sci Mater Med 22(9):2071–2078

    Article  CAS  Google Scholar 

  86. Simmons TJ, Rivet CJ, Singh G, Beaudet J, Sterner E, Guzman D, Hashim DP, Lee SH, QianG, Lewis KM, Karande P, Ajayan PM, Gilbert RJ, Dordick JS (2012) Application of CNT to wound healing biotechnologies. Nanomaterials for Biomedicine. ACS Symposium Series, pp 155–174

    Google Scholar 

  87. Lima MD, Li N, De Andrade MJ et al (2012) Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338:928–932

    Article  CAS  Google Scholar 

  88. Martinelli A, Carru GA, D’Ilario L, Caprioli F, Chiaretti M, Crisante F, Francolini I, Piozzi A (2013) Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue. ACS Appl Mater Interfaces 5(10):4340–4349. doi:10.1021/am400543s

    CAS  Google Scholar 

  89. Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon. Acc Chem Res 46(3):702–713

    Article  CAS  Google Scholar 

  90. Liu X, Gurel V, Morris D, Murray DW, Zhitkovich A, Kane AB, Hurt RH (2007) Bioavailability of nickel in single-wall carbon nanotubes. Adv Mater 19(19):2790–2796

    Article  CAS  Google Scholar 

  91. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    Article  CAS  Google Scholar 

  92. Salvador-Morales C, Basiuk EV, Basiuk VA, Green MLH (2007) Effects of covalent functionalisation on the biocompatibility characteristics of multi-walled carbon nanotubes. J Nanosci Nanotechnol 8:1–10

    Google Scholar 

  93. Ali-Boucetta H, Nunes A, Sainz R, Herrero MA, Tian B, Prato M, Bianco A, Kostarelos K (2013) Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angew Chem Int Ed Engl 52(8):2274–2278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Education MIUR (cofin Prot. 2010N3T9M4 and Firb RBAP11C58Y), the European Union through the ERC Advanced Grant “Carbonanobridge”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bosi, S., Ballerini, L., Prato, M. (2013). Carbon Nanotubes in Tissue Engineering. In: Marcaccio, M., Paolucci, F. (eds) Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes. Topics in Current Chemistry, vol 348. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2013_474

Download citation

Publish with us

Policies and ethics