Skip to main content

Role of Aminoacyl-tRNA Synthetases in Infectious Diseases and Targets for Therapeutic Development

  • Chapter
  • First Online:
Book cover Aminoacyl-tRNA Synthetases in Biology and Medicine

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 344))

Abstract

Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 “housekeeping” enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural “pro-drug” antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA-AMP:

Aminoacyl adenylate

AARS:

Aminoacyl-tRNA synthetase

CA:

Capsid

CA-CTD:

Capsid C-terminal domain

cDNA:

Complementary DNA

EPRS:

Glutaminyl-prolyl-tRNA synthetase

HIV-1:

Human immunodeficiency virus-1

IFN-γ:

Interferon-γ

IleRS:

Isoleucyl-tRNA synthetase

LeuRS:

Leucyl-tRNA synthetase

LysRS:

Lysyl-tRNA synthetase

MetRS:

Methionyl-tRNA synthetase

mRNA:

Messenger RNA

MSC:

Multi-synthetase complex

PBS:

Primer binding site

PheRS:

Phenylalanyl-tRNA synthetase

RSV:

Rous sarcoma virus

SerRS:

Seryl-tRNA synthetase

ThrRS:

Threonyl-tRNA synthetase

TLE:

tRNA-like element

TLS:

tRNA-like structure

tRNA:

Transfer RNA

TrpRS:

Tryptophanyl-tRNA synthetase

TYMV:

Turnip yellow mosaic virus

TyrRS:

Tyrosyl-tRNA synthetase

ValRS:

Valyl-tRNA synthetase

References

  1. Delarue M (1995) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 5:48–55

    CAS  Google Scholar 

  2. Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A 105:11043–11049

    CAS  Google Scholar 

  3. Dreher TW (2010) Viral tRNAs and tRNA-like structures. Wiley Interdiscip Rev RNA 1:402–414

    CAS  Google Scholar 

  4. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156 (table of contents)

    CAS  Google Scholar 

  5. Mak J, Kleiman L (1997) Primer tRNAs for reverse transcription. J Virol 71:8087–8095

    CAS  Google Scholar 

  6. Cen S, Javanbakht H, Kim S, Shiba K, Craven R, Rein A, Ewalt K, Schimmel P, Musier-Forsyth K, Kleiman L (2002) Retrovirus-specific packaging of aminoacyl-tRNA synthetases with cognate primer tRNAs. J Virol 76:13111–13115

    CAS  Google Scholar 

  7. Dahlberg JE, Harada F, Sawyer RC (1975) Structure and properties of an RNA primer for initiation of Rous sarcoma virus DNA synthesis in vitro. Cold Spring Harb Symp Quant Biol 39(Pt 2):925–932

    Google Scholar 

  8. Peters GG, Hu J (1980) Reverse transcriptase as the major determinant for selective packaging of tRNA’s into Avian sarcoma virus particles. J Virol 36:692–700

    CAS  Google Scholar 

  9. Kleiman L, Jones CP, Musier-Forsyth K (2010) Formation of the tRNALys packaging complex in HIV-1. FEBS Lett 584:359–365

    CAS  Google Scholar 

  10. Jiang M, Mak J, Ladha A, Cohen E, Klein M, Rovinski B, Kleiman L (1993) Identification of tRNAs incorporated into wild-type and mutant human immunodeficiency virus type 1. J Virol 67:3246–3253

    CAS  Google Scholar 

  11. Harada F, Peters GG, Dahlberg JE (1979) The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNAPro. J Biol Chem 254:10979–10985

    CAS  Google Scholar 

  12. Waters LC, Mullin BC (1977) Transfer RNA into RNA tumor viruses. Prog Nucleic Acid Res Mol Biol 20:131–160

    CAS  Google Scholar 

  13. Mak J, Jiang M, Wainberg MA, Hammarskjold ML, Rekosh D, Kleiman L (1994) Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. J Virol 68:2065–2072

    CAS  Google Scholar 

  14. Cen S, Khorchid A, Javanbakht H, Gabor J, Stello T, Shiba K, Musier-Forsyth K, Kleiman L (2001) Incorporation of lysyl-tRNA synthetase into human immunodeficiency virus type 1. J Virol 75:5043–5048

    CAS  Google Scholar 

  15. Halwani R, Cen S, Javanbakht H, Saadatmand J, Kim S, Shiba K, Kleiman L (2004) Cellular distribution of Lysyl-tRNA synthetase and its interaction with Gag during human immunodeficiency virus type 1 assembly. J Virol 78:7553–7564

    CAS  Google Scholar 

  16. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350

    CAS  Google Scholar 

  17. Nishida K, Kawasaki T, Fujie M, Usami S, Yamada T (1999) Aminoacylation of tRNAs encoded by Chlorella virus CVK2. Virology 263:220–229

    CAS  Google Scholar 

  18. Abergel C, Rudinger-Thirion J, Giege R, Claverie JM (2007) Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol 81:12406–12417

    CAS  Google Scholar 

  19. Dreher TW (2009) Role of tRNA-like structures in controlling plant virus replication. Virus Res 139:217–229

    CAS  Google Scholar 

  20. Haenni AL, Joshi S, Chapeville F (1982) tRNA-like structures in the genomes of RNA viruses. Prog Nucleic Acid Res Mol Biol 27:85–104

    CAS  Google Scholar 

  21. Mans RM, Guerrier-Takada C, Altman S, Pleij CW (1990) Interaction of RNase P from Escherichia coli with pseudoknotted structures in viral RNAs. Nucleic Acids Res 18:3479–3487

    CAS  Google Scholar 

  22. Dreher TW, Goodwin JB (1998) Transfer RNA mimicry among tymoviral genomic RNAs ranges from highly efficient to vestigial. Nucleic Acids Res 26:4356–4364

    CAS  Google Scholar 

  23. Dreher TW, Tsai CH, Florentz C, Giege R (1992) Specific valylation of turnip yellow mosaic virus RNA by wheat germ valyl-tRNA synthetase determined by three anticodon loop nucleotides. Biochemistry 31:9183–9189

    CAS  Google Scholar 

  24. Rietveld K, Linschooten K, Pleij CW, Bosch L (1984) The three-dimensional folding of the tRNA-like structure of tobacco mosaic virus RNA. A new building principle applied twice. EMBO J 3:2613–2619

    CAS  Google Scholar 

  25. Rudinger J, Felden B, Florentz C, Giege R (1997) Strategy for RNA recognition by yeast histidyl-tRNA synthetase. Bioorg Med Chem 5:1001–1009

    CAS  Google Scholar 

  26. Iyer LM, Aravind L, Koonin EV (2001) Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75:11720–11734

    CAS  Google Scholar 

  27. Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A 108:17486–17491

    CAS  Google Scholar 

  28. Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. Cold Spring Harbor Lab Press, Cold Spring Harbor

    Google Scholar 

  29. Kleiman L, Halwani R, Javanbakht H (2004) The selective packaging and annealing of primer tRNALys3 in HIV-1. Curr HIV Res 2:163–175

    CAS  Google Scholar 

  30. Gabor J, Cen S, Javanbakht H, Niu M, Kleiman L (2002) Effect of altering the tRNA(Lys)(3) concentration in human immunodeficiency virus type 1 upon its annealing to viral RNA, GagPol incorporation, and viral infectivity. J Virol 76:9096–9102

    CAS  Google Scholar 

  31. Guo F, Cen S, Niu M, Javanbakht H, Kleiman L (2003) Specific inhibition of the synthesis of human lysyl-tRNA synthetase results in decreases in tRNA(Lys) incorporation, tRNA(3)(Lys) annealing to viral RNA, and viral infectivity in human immunodeficiency virus type 1. J Virol 77:9817–9822

    CAS  Google Scholar 

  32. Javanbakht H, Cen S, Musier-Forsyth K, Kleiman L (2002) Correlation between tRNALys3 aminoacylation and its incorporation into HIV-1. J Biol Chem 277:17389–17396

    CAS  Google Scholar 

  33. Cen S, Javanbakht H, Niu M, Kleiman L (2004) Ability of wild-type and mutant lysyl-tRNA synthetase to facilitate tRNA(Lys) incorporation into human immunodeficiency virus type 1. J Virol 78:1595–1601

    CAS  Google Scholar 

  34. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    CAS  Google Scholar 

  35. Eriani G, Dirheimer G, Gangloff J (1990) Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. Nucleic Acids Res 18:7109–7118

    CAS  Google Scholar 

  36. Cusack S, Yaremchuk A, Tukalo M (1996) The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J 15:6321–6334

    CAS  Google Scholar 

  37. Guo M, Ignatov M, Musier-Forsyth K, Schimmel P, Yang XL (2008) Crystal structure of tetrameric form of human lysyl-tRNA synthetase: implications for multisynthetase complex formation. Proc Natl Acad Sci U S A 105:2331–2336

    CAS  Google Scholar 

  38. Onesti S, Miller AD, Brick P (1995) The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure 3:163–176

    CAS  Google Scholar 

  39. Park SG, Ewalt KL, Kim S (2005) Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem Sci 30:569–574

    CAS  Google Scholar 

  40. Fang P, Zhang HM, Shapiro R, Marshall AG, Schimmel P, Yang XL, Guo M (2011) Structural context for mobilization of a human tRNA synthetase from its cytoplasmic complex. Proc Natl Acad Sci U S A 108:8239–8244

    CAS  Google Scholar 

  41. Kaminska M, Shalak V, Francin M, Mirande M (2007) Viral hijacking of mitochondrial lysyl-tRNA synthetase. J Virol 81:68–73

    CAS  Google Scholar 

  42. Kobbi L, Octobre G, Dias J, Comisso M, Mirande M (2011) Association of mitochondrial Lysyl-tRNA synthetase with HIV-1 GagPol involves catalytic domain of the synthetase and transframe and integrase domains of Pol. J Mol Biol 410:875–886

    CAS  Google Scholar 

  43. Javanbakht H, Halwani R, Cen S, Saadatmand J, Musier-Forsyth K, Gottlinger H, Kleiman L (2003) The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly. J Biol Chem 278:27644–27651

    CAS  Google Scholar 

  44. Kovaleski BJ, Kennedy R, Hong MK, Datta SA, Kleiman L, Rein A, Musier-Forsyth K (2006) In vitro characterization of the interaction between HIV-1 Gag and human lysyl-tRNA synthetase. J Biol Chem 281:19449–19456

    CAS  Google Scholar 

  45. Kovaleski BJ, Kennedy R, Khorchid A, Kleiman L, Matsuo H, Musier-Forsyth K (2007) Critical role of helix 4 of HIV-1 capsid C-terminal domain in interactions with human lysyl-tRNA synthetase. J Biol Chem 282:32274–32279

    CAS  Google Scholar 

  46. Guo M, Shapiro R, Morris GM, Yang XL, Schimmel P (2010) Packaging HIV virion components through dynamic equilibria of a human tRNA synthetase. J Phys Chem B 114:16273–16279

    CAS  Google Scholar 

  47. Na Nakorn P, Treesuwan W, Choowongkomon K, Hannongbua S, Boonyalai N (2011) In vitro and in silico binding study of the peptide derived from HIV-1 CA-CTD and LysRS as a potential HIV-1 blocking site. J Theor Biol 270:88–97

    Google Scholar 

  48. Dewan V, Wei M, Kleiman L, Musier-Forsyth K (2012) Dual role for motif 1 residues of human lysyl-tRNA synthetase in dimerization and packaging into HIV-1. J Biol Chem 287:41955–41962

    CAS  Google Scholar 

  49. Dewan V, Liu T, Chen KM, Qian Z, Xiao Y, Kleiman L, Mahasenan KV, Li C, Matsuo H, Pei D, Musier-Forsyth K (2012) Cyclic peptide inhibitors of HIV-1 capsid-human lysyl-tRNA synthetase interaction. ACS Chem Biol 7:761–769

    CAS  Google Scholar 

  50. Park SG, Kim HJ, Min YH, Choi EC, Shin YK, Park BJ, Lee SW, Kim S (2005) Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci U S A 102:6356–6361

    CAS  Google Scholar 

  51. Yannay-Cohen N, Carmi-Levy I, Kay G, Yang CM, Han JM, Kemeny DM, Kim S, Nechushtan H, Razin E (2009) LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell 34:603–611

    CAS  Google Scholar 

  52. Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I, Shapiro R, Song J, Dagan A, Pozo J, Kim S, Marshall AG, Schimmel P, Yang XL, Nechushtan H, Razin E, Guo M (2013) Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 49:30–42

    CAS  Google Scholar 

  53. Kim DG, Choi JW, Lee JY, Kim H, Oh YS, Lee JW, Tak YK, Song JM, Razin E, Yun SH, Kim S (2012) Interaction of two translational components, lysyl-tRNA synthetase and p40/37LRP, in plasma membrane promotes laminin-dependent cell migration. FASEB J 26:4142–4159

    CAS  Google Scholar 

  54. Feng YX, Campbell S, Harvin D, Ehresmann B, Ehresmann C, Rein A (1999) The human immunodeficiency virus type 1 Gag polyprotein has nucleic acid chaperone activity: possible role in dimerization of genomic RNA and placement of tRNA on the primer binding site. J Virol 73:4251–4256

    CAS  Google Scholar 

  55. Jones CP, Datta SA, Rein A, Rouzina I, Musier-Forsyth K (2011) Matrix domain modulates HIV-1 Gag’s nucleic acid chaperone activity via inositol phosphate binding. J Virol 85:1594–1603

    CAS  Google Scholar 

  56. Levin JG, Guo J, Rouzina I, Musier-Forsyth K (2005) Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog Nucleic Acid Res Mol Biol 80:217–286

    CAS  Google Scholar 

  57. Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K (2010) Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 7:754–774

    CAS  Google Scholar 

  58. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, Burch CL, Weeks KM (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–716

    CAS  Google Scholar 

  59. Bolinger C, Boris-Lawrie K (2009) Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 6:8

    Google Scholar 

  60. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6:e96

    Google Scholar 

  61. Brule F, Bec G, Keith G, le Grice SF, Roques BP, Ehresmann B, Ehresmann C, Marquet R (2000) In vitro evidence for the interaction of tRNA(3)(Lys) with U3 during the first strand transfer of HIV-1 reverse transcription. Nucleic Acids Res 28:634–640

    CAS  Google Scholar 

  62. Song M, Balakrishnan M, Gorelick RJ, Bambara RA (2009) A succession of mechanisms stimulate efficient reconstituted HIV-1 minus strand strong stop DNA transfer. Biochemistry 48:1810–1819

    CAS  Google Scholar 

  63. Piekna-Przybylska D, Dichiacchio L, Mathews DH, Bambara RA (2010) A sequence similar to tRNA 3 Lys gene is embedded in HIV-1 U3-R and promotes minus-strand transfer. Nat Struct Mol Biol 17:83–89

    CAS  Google Scholar 

  64. Jones CP, Saadatmand J, Kleiman L, Musier-Forsyth K (2013) Molecular mimicry of human tRNALys anti-codon domain by HIV-1 RNA genome facilitates tRNA primer annealing. RNA 19(2):219–229

    CAS  Google Scholar 

  65. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    CAS  Google Scholar 

  66. Bange FC, Flohr T, Buwitt U, Bottger EC (1992) An interferon-induced protein with release factor activity is a tryptophanyl-tRNA synthetase. FEBS Lett 300:162–166

    CAS  Google Scholar 

  67. Fleckner J, Rasmussen HH, Justesen J (1991) Human interferon gamma potently induces the synthesis of a 55-kDa protein (gamma 2) highly homologous to rabbit peptide chain release factor and bovine tryptophanyl-tRNA synthetase. Proc Natl Acad Sci U S A 88:11520–11524

    CAS  Google Scholar 

  68. Rubin BY, Anderson SL, Xing L, Powell RJ, Tate WP (1991) Interferon induces tryptophanyl-tRNA synthetase expression in human fibroblasts. J Biol Chem 266:24245–24248

    CAS  Google Scholar 

  69. Sajish M, Zhou Q, Kishi S, Valdez DM Jr, Kapoor M, Guo M, Lee S, Kim S, Yang XL, Schimmel P (2012) Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-gamma and p53 signaling. Nat Chem Biol 8:547–554

    CAS  Google Scholar 

  70. Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel P (2002) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci U S A 99:173–177

    CAS  Google Scholar 

  71. Zhou Q, Kapoor M, Guo M, Belani R, Xu X, Kiosses WB, Hanan M, Park C, Armour E, Do MH, Nangle LA, Schimmel P, Yang XL (2010) Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality. Nat Struct Mol Biol 17:57–61

    CAS  Google Scholar 

  72. Popenko VI, Cherni NE, Beresten SF, Zargarova TA, Favorova OO (1989) Immune electron microscope determination of the localization of tryptophanyl-tRNA-synthetase in bacteria and higher eukaryotes. Mol Biol (Mosk) 23:1669–1681

    CAS  Google Scholar 

  73. Popenko VI, Cherny NE, Beresten SF, Ivanova JL, Filonenko VV, Kisselev LL (1993) Immunoelectron microscopic location of tryptophanyl-tRNA synthetase in mammalian, prokaryotic and archaebacterial cells. Eur J Cell Biol 62:248–258

    CAS  Google Scholar 

  74. Garbitt-Hirst R, Kenney SP, Parent LJ (2009) Genetic evidence for a connection between Rous sarcoma virus gag nuclear trafficking and genomic RNA packaging. J Virol 83:6790–6797

    CAS  Google Scholar 

  75. Kenney SP, Lochmann TL, Schmid CL, Parent LJ (2008) Intermolecular interactions between retroviral Gag proteins in the nucleus. J Virol 82:683–691

    CAS  Google Scholar 

  76. Schimmel P, Tao J, Hill J (1998) Aminoacyl tRNA synthetases as targets for new anti-infectives. FASEB J 12:1599–1609

    CAS  Google Scholar 

  77. Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    CAS  Google Scholar 

  78. Levy SB (2002) The antibiotic paradox: how the misuse of antibiotic destroys their curative powers. Perseus, Cambridge

    Google Scholar 

  79. Walsh CT (2003) Antibiotics: actions, origins, resistance. Amer Society for Microbiology, Washington, DC, p 345

    Google Scholar 

  80. Ataide SF, Ibba M (2006) Small molecules: big players in the evolution of protein synthesis. ACS Chem Biol 1:285–297

    CAS  Google Scholar 

  81. Vondenhoff GH, van Aerschot A (2011) Aminoacyl-tRNA synthetase inhibitors as potential antibiotics. Eur J Med Chem 46:5227–5236

    CAS  Google Scholar 

  82. Fuller AT, Mellows G, Woolford M, Banks GT, Barrow KD, Chain EB (1971) Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234:416–417

    CAS  Google Scholar 

  83. Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR (1985) Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother 27:495–498

    CAS  Google Scholar 

  84. Ochsner UA, Sun X, Jarvis T, Critchley I, Janjic N (2007) Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents. Expert Opin Investig Drugs 16:573–593

    CAS  Google Scholar 

  85. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    CAS  Google Scholar 

  86. Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woese CR, Soll D (1997) A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122

    CAS  Google Scholar 

  87. Beuning PJ, Musier-Forsyth K (1999) Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers 52:1–28

    CAS  Google Scholar 

  88. Fersht AR (1981) Enzymic editing mechanisms and the genetic code. Proc R Soc Lond B Biol Sci 212:351–379

    CAS  Google Scholar 

  89. Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64:202–236

    CAS  Google Scholar 

  90. Kitabatake M, Ali K, Demain A, Sakamoto K, Yokoyama S, Soll D (2002) Indolmycin resistance of Streptomyces coelicolor A3(2) by induced expression of one of its two tryptophanyl-tRNA synthetases. J Biol Chem 277:23882–23887

    CAS  Google Scholar 

  91. Werner RG, Thorpe LF, Reuter W, Nierhaus KH (1976) Indolmycin inhibits prokaryotic tryptophanyl-tRNA ligase. Eur J Biochem 68:1–3

    CAS  Google Scholar 

  92. Hurdle JG, O'Neill AJ, Chopra I (2004) Anti-staphylococcal activity of indolmycin, a potential topical agent for control of staphylococcal infections. J Antimicrob Chemother 54:549–552

    CAS  Google Scholar 

  93. Brown MJ, Carter PS, Fenwick AS, Fosberry AP, Hamprecht DW, Hibbs MJ, Jarvest RL, Mensah L, Milner PH, O'Hanlon PJ, Pope AJ, Richardson CM, West A, Witty DR (2002) The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. Bioorg Med Chem Lett 12:3171–3174

    CAS  Google Scholar 

  94. Konishi M, Nishio M, Saitoh K, Miyaki T, Oki T, Kawaguchi H (1989) Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J Antibiot (Tokyo) 42:1749–1755

    CAS  Google Scholar 

  95. Hasenoehrl A, Galic T, Ergovic G, Marsic N, Skerlev M, Mittendorf J, Geschke U, Schmidt A, Schoenfeld W (2006) In vitro activity and in vivo efficacy of icofungipen (PLD-118), a novel oral antifungal agent, against the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 50:3011–3018

    CAS  Google Scholar 

  96. Keller TL, Zocco D, Sundrud MS, Hendrick M, Edenius M, Yum J, Kim YJ, Lee HK, Cortese JF, Wirth DF, Dignam JD, Rao A, Yeo CY, Mazitschek R, Whitman M (2012) Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol 8:311–317

    CAS  Google Scholar 

  97. Konrad I, Roschenthaler R (1977) Inhibition of phenylalanine tRNA synthetase from Bacillus subtilis by ochratoxin A. FEBS Lett 83:341–347

    CAS  Google Scholar 

  98. Jarvest RL, Berge JM, Brown P, Hamprecht DW, McNair DJ, Mensah L, O'Hanlon PJ, Pope AJ (2001) Potent synthetic inhibitors of tyrosyl tRNA synthetase derived from C-pyranosyl analogues of SB-219383. Bioorg Med Chem Lett 11:715–718

    CAS  Google Scholar 

  99. Jarvest RL, Berge JM, Houge-Frydrych CS, Mensah LM, O'Hanlon PJ, Pope AJ (2001) Inhibitors of bacterial tyrosyl tRNA synthetase: synthesis of carbocyclic analogues of the natural product SB-219383. Bioorg Med Chem Lett 11:2499–2502

    CAS  Google Scholar 

  100. Tanaka K, Tamaki M, Watanabe S (1969) Effect of furanomycin on the synthesis of isoleucyl-tRNA. Biochim Biophys Acta 195:244–245

    CAS  Google Scholar 

  101. Kohno T, Kohda D, Haruki M, Yokoyama S, Miyazawa T (1990) Nonprotein amino acid furanomycin, unlike isoleucine in chemical structure, is charged to isoleucine tRNA by isoleucyl-tRNA synthetase and incorporated into protein. J Biol Chem 265:6931–6935

    CAS  Google Scholar 

  102. Hughes J, Mellows G (1980) Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J 191:209–219

    CAS  Google Scholar 

  103. Yanagisawa T, Lee JT, Wu HC, Kawakami M (1994) Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli. A proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J Biol Chem 269:24304–24309

    CAS  Google Scholar 

  104. Baines, PJ, Jackson D, Mellows G, Swaisland AJ, Tasker TCG (1984) Mupirocin: its chemistry and metabolism. The Royal Society of Medicine International Congress and Symposium Series No. 80: mupirocin—a novel topical antibiotic, pp 13–22

    Google Scholar 

  105. Nakama T, Nureki O, Yokoyama S (2001) Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem 276:47387–47393

    CAS  Google Scholar 

  106. Silvian LF, Wang J, Steitz TA (1999) Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 285:1074–1077

    CAS  Google Scholar 

  107. Brown MJ, Mensah LM, Doyle ML, Broom NJ, Osbourne N, Forrest AK, Richardson CM, O'Hanlon PJ, Pope AJ (2000) Rational design of femtomolar inhibitors of isoleucyl tRNA synthetase from a binding model for pseudomonic acid-A. Biochemistry 39:6003–6011

    CAS  Google Scholar 

  108. Pope AJ, Lapointe J, Mensah L, Benson N, Brown MJ, Moore KJ (1998) Characterization of isoleucyl-tRNA synthetase from Staphylococcus aureus. I: Kinetic mechanism of the substrate activation reaction studied by transient and steady-state techniques. J Biol Chem 273:31680–31690

    CAS  Google Scholar 

  109. Pope AJ, Moore KJ, McVey M, Mensah L, Benson N, Osbourne N, Broom N, Brown MJ, O'Hanlon P (1998) Characterization of isoleucyl-tRNA synthetase from Staphylococcus aureus. II. Mechanism of inhibition by reaction intermediate and pseudomonic acid analogues studied using transient and steady-state kinetics. J Biol Chem 273:31691–31701

    CAS  Google Scholar 

  110. Levengood J, Ataide SF, Roy H, Ibba M (2004) Divergence in noncognate amino acid recognition between class I and class II lysyl-tRNA synthetases. J Biol Chem 279:17707–17714

    CAS  Google Scholar 

  111. Raczniak G, Ibba M, Soll D (2001) Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use. Toxicology 160:181–189

    CAS  Google Scholar 

  112. Jarvest RL, Berge JM, Berry V, Boyd HF, Brown MJ, Elder JS, Forrest AK, Fosberry AP, Gentry DR, Hibbs MJ, Jaworski DD, O'Hanlon PJ, Pope AJ, Rittenhouse S, Sheppard RJ, Slater-Radosti C, Worby A (2002) Nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase with potent antibacterial activity against Gram-positive pathogens. J Med Chem 45:1959–1962

    CAS  Google Scholar 

  113. Ochsner UA, Young CL, Stone KC, Dean FB, Janjic N, Critchley IA (2005) Mode of action and biochemical characterization of REP8839, a novel inhibitor of methionyl-tRNA synthetase. Antimicrob Agents Chemother 49:4253–4262

    CAS  Google Scholar 

  114. Green LS, Bullard JM, Ribble W, Dean F, Ayers DF, Ochsner UA, Janjic N, Jarvis TC (2009) Inhibition of methionyl-tRNA synthetase by REP8839 and effects of resistance mutations on enzyme activity. Antimicrob Agents Chemother 53:86–94

    CAS  Google Scholar 

  115. Critchley IA, Ochsner UA (2008) Recent advances in the preclinical evaluation of the topical antibacterial agent REP8839. Curr Opin Chem Biol 12:409–417

    CAS  Google Scholar 

  116. Critchley IA, Young CL, Stone KC, Ochsner UA, Guiles J, Tarasow T, Janjic N (2005) Antibacterial activity of REP8839, a new antibiotic for topical use. Antimicrob Agents Chemother 49:4247–4252

    CAS  Google Scholar 

  117. Hutter R, Poralla K, Zachau HG, Zahner H (1966) Metabolic products of microorganisms. 5l. On the mechanism of action of borrelidin-inhibition of the threonine incorporation in sRNA. Biochem Z 344:190–196

    CAS  Google Scholar 

  118. Ruan B, Bovee ML, Sacher M, Stathopoulos C, Poralla K, Francklyn CS, Soll D (2005) A unique hydrophobic cluster near the active site contributes to differences in borrelidin inhibition among threonyl-tRNA synthetases. J Biol Chem 280:571–577

    CAS  Google Scholar 

  119. Tsuchiya E, Yukawa M, Miyakawa T, Kimura KI, Takahashi H (2001) Borrelidin inhibits a cyclin-dependent kinase (CDK), Cdc28/Cln2, of Saccharomyces cerevisiae. J Antibiot (Tokyo) 54:84–90

    CAS  Google Scholar 

  120. Habibi D, Ogloff N, Jalili RB, Yost A, Weng AP, Ghahary A, Ong CJ (2012) Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs 30:1361–1370

    CAS  Google Scholar 

  121. Kawamura T, Liu D, Towle MJ, Kageyama R, Tsukahara N, Wakabayashi T, Littlefield BA (2003) Anti-angiogenesis effects of borrelidin are mediated through distinct pathways: threonyl-tRNA synthetase and caspases are independently involved in suppression of proliferation and induction of apoptosis in endothelial cells. J Antibiot (Tokyo) 56:709–715

    CAS  Google Scholar 

  122. Otoguro K, Ui H, Ishiyama A, Kobayashi M, Togashi H, Takahashi Y, Masuma R, Tanaka H, Tomoda H, Yamada H, Omura S (2003) In vitro and in vivo antimalarial activities of a non-glycosidic 18-membered macrolide antibiotic, borrelidin, against drug-resistant strains of Plasmodia. J Antibiot (Tokyo) 56:727–729

    CAS  Google Scholar 

  123. Ishiyama A, Iwatsuki M, Namatame M, Nishihara-Tsukashima A, Sunazuka T, Takahashi Y, Omura S, Otoguro K (2011) Borrelidin, a potent antimalarial: stage-specific inhibition profile of synchronized cultures of Plasmodium falciparum. J Antibiot (Tokyo) 64:381–384

    CAS  Google Scholar 

  124. Jackson KE, Pham JS, Kwek M, de Silva NS, Allen SM, Goodman CD, McFadden GI, de Pouplana LR, Ralph SA (2012) Dual targeting of aminoacyl-tRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum. Int J Parasitol 42:177–186

    CAS  Google Scholar 

  125. Vicens Q, Westhof E (2002) Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem Biol 9:747–755

    CAS  Google Scholar 

  126. Walter F, Putz J, Giege R, Westhof E (2002) Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation. EMBO J 21:760–768

    CAS  Google Scholar 

  127. Reader JS, Ordoukhanian PT, Kim JG, De Crecy-Lagard V, Hwang I, Farrand S, Schimmel P (2005) Major biocontrol of plant tumors targets tRNA synthetase. Science 309:1533

    CAS  Google Scholar 

  128. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crepin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MR (2007) An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–1761

    CAS  Google Scholar 

  129. Baker SJ, Tomsho JW, Benkovic SJ (2011) Boron-containing inhibitors of synthetases. Chem Soc Rev 40:4279–4285

    CAS  Google Scholar 

  130. Barak O, Loo DS (2007) AN-2690, a novel antifungal for the topical treatment of onychomycosis. Curr Opin Investig Drugs 8:662–668

    CAS  Google Scholar 

  131. Seiradake E, Mao W, Hernandez V, Baker SJ, Plattner JJ, Alley MR, Cusack S (2009) Crystal structures of the human and fungal cytosolic leucyl-tRNA synthetase editing domains: a structural basis for the rational design of antifungal benzoxaboroles. J Mol Biol 390:196–207

    CAS  Google Scholar 

  132. Tan M, Zhu B, Zhou XL, He R, Chen X, Eriani G, Wang ED (2010) tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase. J Biol Chem 285:3235–3244

    CAS  Google Scholar 

  133. Chopra S, Palencia A, Virus C, Tripathy A, Temple BR, Velazquez-Campoy A, Cusack S, Reader JS (2013) Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase. Nat Commun 4:1417

    Google Scholar 

  134. Ellis JG, Kerr A, van Montagu M, Schell J (1979) Agrobacterium: genetic studies on agrocin 84 production and the biological control of crown gall. Physiol Plant Pathol 15:311–319

    Google Scholar 

  135. Kerr A, Htay K (1974) Biological control of crown gall through bacteriocin production. Physiol Plant Pathol 4:37–44

    CAS  Google Scholar 

  136. Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  137. Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    CAS  Google Scholar 

  138. Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    CAS  Google Scholar 

  139. Bevan MW, Chilton MD (1982) T-DNA of the Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16:357–384

    CAS  Google Scholar 

  140. Ryder MH, Tate ME, Jones GP (1984) Agrocinopine A, a tumor-inducing plasmid-coded enzyme product, is a phosphodiester of sucrose and L-arabinose. J Biol Chem 259:9704–9710

    CAS  Google Scholar 

  141. Tate ME, Murphy PJ, Roberts WP, Kerr A (1979) Adenine N6-substituent of agrocin 84 determines its bacteriocin-like specificity. Nature 280:697–699

    CAS  Google Scholar 

  142. Roberts WP, Tate ME, Kerr A (1977) Agrocin 84 is a 6-N-phosphoramidate of an adenine nucleotide analogue. Nature 265:379–381

    CAS  Google Scholar 

  143. Murphy PJ, Tate ME, Kerr A (1981) Substituents at N6 and C-5′ control selective uptake and toxicity of the adenine-nucleotide bacteriocin, agrocin 84, in Agrobacteria. Eur J Biochem 115:539–543

    CAS  Google Scholar 

  144. Braun V, Gunthner K, Hantke K, Zimmermann L (1983) Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J Bacteriol 156:308–315

    CAS  Google Scholar 

  145. Pramanik A, Stroeher UH, Krejci J, Standish AJ, Bohn E, Paton JC, Autenrieth IB, Braun V (2007) Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. Int J Med Microbiol 297:459–469

    CAS  Google Scholar 

  146. Pramanik A, Braun V (2006) Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 188:3878–3886

    CAS  Google Scholar 

  147. Stefanska AL, Fulston M, Houge-Frydrych CS, Jones JJ, Warr SR (2000) A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J Antibiot (Tokyo) 53:1346–1353

    CAS  Google Scholar 

  148. Guijarro JI, Gonzalez-Pastor JE, Baleux F, San Millan JL, Castilla MA, Rico M, Moreno F, Delepierre M (1995) Chemical structure and translation inhibition studies of the antibiotic microcin C7. J Biol Chem 270:23520–23532

    CAS  Google Scholar 

  149. Garcia-Bustos JF, Pezzi N, Mendez E (1985) Structure and mode of action of microcin 7, an antibacterial peptide produced by Escherichia coli. Antimicrob Agents Chemother 27:791–797

    CAS  Google Scholar 

  150. Novikova M, Metlitskaya A, Datsenko K, Kazakov T, Kazakov A, Wanner B, Severinov K (2007) The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J Bacteriol 189:8361–8365

    CAS  Google Scholar 

  151. Metlitskaya A, Kazakov T, Kommer A, Pavlova O, Praetorius-Ibba M, Ibba M, Krasheninnikov I, Kolb V, Khmel I, Severinov K (2006) Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. J Biol Chem 281:18033–18042

    CAS  Google Scholar 

  152. Roush RF, Nolan EM, Lohr F, Walsh CT (2008) Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation in microcin C7. J Am Chem Soc 130:3603–3609

    CAS  Google Scholar 

  153. Novikova M, Kazakov T, Vondenhoff GH, Semenova E, Rozenski J, Metlytskaya A, Zukher I, Tikhonov A, van Aerschot A, Severinov K (2010) MccE provides resistance to protein synthesis inhibitor microcin C by acetylating the processed form of the antibiotic. J Biol Chem 285:12662–12669

    CAS  Google Scholar 

  154. Kazakov T, Metlitskaya A, Severinov K (2007) Amino acid residues required for maturation, cell uptake, and processing of translation inhibitor microcin C. J Bacteriol 189:2114–2118

    CAS  Google Scholar 

  155. Kazakov T, Vondenhoff GH, Datsenko KA, Novikova M, Metlitskaya A, Wanner BL, Severinov K (2008) Escherichia coli peptidase A, B, or N can process translation inhibitor microcin C. J Bacteriol 190:2607–2610

    CAS  Google Scholar 

  156. van de Vijver P, Vondenhoff GH, Kazakov TS, Semenova E, Kuznedelov K, Metlitskaya A, van Aerschot A, Severinov K (2009) Synthetic microcin C analogs targeting different aminoacyl-tRNA synthetases. J Bacteriol 191:6273–6280

    Google Scholar 

  157. Thomas CM, Hothersall J, Willis CL, Simpson TJ (2010) Resistance to and synthesis of the antibiotic mupirocin. Nat Rev Microbiol 8:281–289

    CAS  Google Scholar 

  158. Vecchione JJ, Sello JK (2009) A novel tryptophanyl-tRNA synthetase gene confers high-level resistance to indolmycin. Antimicrob Agents Chemother 53:3972–3980

    CAS  Google Scholar 

  159. Vecchione JJ, Sello JK (2008) Characterization of an inducible, antibiotic-resistant aminoacyl-tRNA synthetase gene in Streptomyces coelicolor. J Bacteriol 190:6253–6257

    CAS  Google Scholar 

  160. Vecchione JJ, Sello JK (2010) Regulation of an auxiliary, antibiotic-resistant tryptophanyl-tRNA synthetase gene via ribosome-mediated transcriptional attenuation. J Bacteriol 192:3565–3573

    CAS  Google Scholar 

  161. Zeng Y, Roy H, Patil PB, Ibba M, Chen S (2009) Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. strain ATCC 700974. Antimicrob Agents Chemother 53:4619–4627

    CAS  Google Scholar 

  162. Kim JG, Park BK, Kim SU, Choi D, Nahm BH, Moon JS, Reader JS, Farrand SK, Hwang I (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Proc Natl Acad Sci U S A 103:8846–8851

    CAS  Google Scholar 

  163. Ryder MH, Slota JE, Scarim A, Farrand SK (1987) Genetic analysis of agrocin 84 production and immunity in Agrobacterium spp. J Bacteriol 169:4184–4189

    CAS  Google Scholar 

  164. Shim J-S, Farrand SK, Kerr A (1987) Biological control of crown gall: construction and testing of new biocontrol agents. Phytopathology 77:463–466

    CAS  Google Scholar 

  165. Andam CP, Fournier GP, Gogarten JP (2011) Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol Rev 35:756–767

    CAS  Google Scholar 

  166. Andam CP, Gogarten JP (2011) Biased gene transfer and its implications for the concept of lineage. Biol Direct 6:47

    Google Scholar 

  167. Andam CP, Gogarten JP (2011) Biased gene transfer in microbial evolution. Nat Rev Microbiol 9:543–555

    CAS  Google Scholar 

  168. Patel JB, Gowitz RJ, Jernigan JA (2009) Mupirocin resistance. Clin Infect Dis 49:935–941

    CAS  Google Scholar 

  169. Brown JR, Zhang J, Hodgson JE (1998) A bacterial antibiotic resistance gene with eukaryotic origins. Curr Biol 8:R365–R367

    CAS  Google Scholar 

  170. Gentry DR, Ingraham KA, Stanhope MJ, Rittenhouse S, Jarvest RL, O'Hanlon PJ, Brown JR, Holmes DJ (2003) Variable sensitivity to bacterial methionyl-tRNA synthetase inhibitors reveals subpopulations of Streptococcus pneumoniae with two distinct methionyl-tRNA synthetase genes. Antimicrob Agents Chemother 47:1784–1789

    CAS  Google Scholar 

  171. Brown JR, Gentry D, Becker JA, Ingraham K, Holmes DJ, Stanhope MJ (2003) Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens. EMBO Rep 4:692–698

    CAS  Google Scholar 

  172. Panagopoulos CG, Psallidas PG, Alivizatos AS (1979) Evidence of a breakdown in the effectiveness of biological control of crown gall. In: Shippers B, Gams W (eds) Soil-borne plant pathogens. Academic, London

    Google Scholar 

  173. Ellis JG, Kerr A (1979) Transfer of agrocin 84 production from strain 84 to pathogenic recipients: a comment on a previous paper. In: Shippers B, Gams W (eds) Soil-borne plant pathogens. Academic, London

    Google Scholar 

  174. Jones DA, Ryder MH, Clare BG, Farrand SK, Kerr A (1988) Construction of the Tra- deletion mutant of pAgK84 to safeguard the biological control of crown gall. Mol Gen Genet 212:207–214

    CAS  Google Scholar 

  175. Kerr A, Tate M (2004) Biological control of crown gall. In: Nester E, Gordon MP, Kerr A (eds) Agrobacterium tumefaciens: from plant pathology to biotechnology. APS Press, St. Paul

    Google Scholar 

  176. Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499

    CAS  Google Scholar 

  177. O'Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 22:552–558

    Google Scholar 

  178. Matsuda D, Dreher TW (2004) The tRNA-like structure of turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321:36–46

    CAS  Google Scholar 

  179. Weiner AM, Maizels N (1987) tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84:7383–7387

    CAS  Google Scholar 

  180. González-Pastor JE, San Millán JL, Moreno F (1994) The smallest known gene. Nature 369(6478):281

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from National Institutes of Health Grants GM049928 and AI077387 (to K.M.-F.) and National Science Foundation Grant MCB-1158488 (to J.S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin-Musier Forsyth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dewan, V., Reader, J., Forsyth, KM. (2013). Role of Aminoacyl-tRNA Synthetases in Infectious Diseases and Targets for Therapeutic Development. In: Kim, S. (eds) Aminoacyl-tRNA Synthetases in Biology and Medicine. Topics in Current Chemistry, vol 344. Springer, Dordrecht. https://doi.org/10.1007/128_2013_425

Download citation

Publish with us

Policies and ethics