Skip to main content

Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 334))

Abstract

The concept of the “frustrated” Lewis pair (FLP) offers a valuable paradigm for transition metal complexes. This chapter describes recent developments in FLP chemistry where one or both of the Lewis acidic or Lewis basic components are based on a transition metal. At the forefront of these developments have been zirconocene–phosphinoaryloxide complexes; the activation of small molecules, including H2, CO2, ethers, olefins and alkyl chlorides or fluorides, with such zirconocene (or group 4 metallocene in general) phosphine pairs is described. Nascent catalytic applications for such complexes in dehydrogenation reactions and future possibilities for catalytic reactivity are also highlighted. A wider discussion of how the FLP concept may rationalise previous examples of cooperative reactivity in transition metal complexes, such as the heterolytic cleavage of hydrogen, suggests a strong and useful analogy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Erker G (2011) Bio-organometallic chemistry, ansa-metallocenes, and frustrated Lewis pairs: functional group chemistry at the group 4 bent metallocenes. Organometallics 30:358

    Article  CAS  Google Scholar 

  2. Amgoune A, Bourissou D (2011) σ-Acceptor, Z-type ligands for transition metals. Chem Commun 47:859

    Article  CAS  Google Scholar 

  3. Yamamoto H (ed) (2000) Lewis acids in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  4. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)-based and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J Am Chem Soc 117:6414

    Article  CAS  Google Scholar 

  5. Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417:507

    Article  CAS  Google Scholar 

  6. Bauer J, Braunschweig H, Brenner P, Kraft K, Radacki K, Schwab K (2010) Late-transition-metal complexes as tunable Lewis bases. Chem Eur J 16:11985

    Article  CAS  Google Scholar 

  7. Bauer J, Braunschweig H, Dewhurst RD (2012) Metal-only Lewis pairs with transition metal Lewis bases. Chem Rev. doi:10.1021/cr3000048

    Google Scholar 

  8. Jiang C, Blacque O, Fox T, Berke H (2011) Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton Trans 40:1091

    Article  Google Scholar 

  9. Ullrich M, Lough AJ, Stephan DW (2009) Reversible, metal-free, heterolytic activation of H2 at room temperature. J Am Chem Soc 131:52

    Article  CAS  Google Scholar 

  10. Rokob TA, Hamza A, Pápai I (2009) Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H2 activation and the role of acid–base properties. J Am Chem Soc 131: 10701

    Article  CAS  Google Scholar 

  11. Otten E, Neu RC, Stephan DW (2009) Complexation of nitrous oxide by frustrated Lewis pairs. J Am Chem Soc 131:9918

    Article  CAS  Google Scholar 

  12. Ashley AE, Herrington TJ, Wildgoose GG, Zaher H, Thompson AL, Rees NH, Krämer T, O’Hare D (2011) Separating electrophilicity and Lewis acidity: the synthesis, characterization, and electrochemistry of the electron deficient tris(aryl)boranes B(C6F5)3−n(C6Cl5)n (n = 1–3). J Am Chem Soc 133:14727

    Article  CAS  Google Scholar 

  13. Chapman AM, Haddow MF, Wass DF (2011) Frustrated Lewis pairs beyond the main group: cationic zirconocene–phosphinoaryloxide complexes and their application in catalytic dehydrogenation of amine boranes. J Am Chem Soc 133:8826

    Article  CAS  Google Scholar 

  14. Chapman AM, Haddow MF, Wass DF (2011) Frustrated Lewis pairs beyond the main group: synthesis, reactivity, and small molecule activation with cationic zirconocene–phosphinoaryloxide complexes. J Am Chem Soc 133:18463

    Article  CAS  Google Scholar 

  15. Chapman AM, Haddow MF, Wass DF (2012) Cationic group 4 metallocene–(o-phosphanylaryl)oxido complexes: synthetic routes to transition-metal frustrated Lewis pairs. Eur J Inorg Chem 9:1546

    Article  Google Scholar 

  16. Chapman AM, Wass DF (2012) Cationic Ti(IV) and neutral Ti(III) titanocene–phosphinoaryloxide frustrated Lewis pairs: hydrogen activation and catalytic amine-borane dehydrogenation. Dalton Trans 41:9067

    Article  CAS  Google Scholar 

  17. Stephan DW (2008) “Frustrated Lewis pairs”: a concept for new reactivity and catalysis. Org Biomol Chem 6:1535

    Article  CAS  Google Scholar 

  18. Brown HC, Schlesinger HI, Cardon SZ (1942) Studies in stereochemistry. I. Steric strains as a factor in the relative stability of some coordination compounds of boron. J Am Chem Soc 64:325–329

    Article  CAS  Google Scholar 

  19. Brown HC, Kanner B (1966) Preparation and reactions of 2,6-di-t-butylpyridine and related hindered bases. A case of steric hindrance toward the proton. J Am Chem Soc 88:986–992

    Article  CAS  Google Scholar 

  20. Wittig G, Benz E (1959) Über das Verhalten von Dehydrobenzol gegenüber nucleophilen und elektrophilen Reagenzien. Chem Ber 92:1999–2013

    Article  CAS  Google Scholar 

  21. Chen EYX, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. Chem Rev 100:1391

    Article  CAS  Google Scholar 

  22. Neu RC, Otten E, Lough A, Stephan DW (2011) The synthesis and exchange chemistry of frustrated Lewis pair–nitrous oxide complexes. Chem Sci 2:170

    Article  CAS  Google Scholar 

  23. Schaper F, Geyer A, Brintzinger HH (2002) Displacement of H3CB(C6F5)3 anions from zirconocene methyl cations by neutral ligand molecules: equilibria, kinetics, and mechanisms. Organometallics 21:473–483

    Article  CAS  Google Scholar 

  24. Yang X, Stern CL, Marks TJ (1991) Cation-like homogeneous olefin polymerization catalysts based upon zirconocene alkyls and tris(pentafluorophenyl)borane. J Am Chem Soc 113:3623

    Article  CAS  Google Scholar 

  25. Yang X, Stern C, Marks TJ (1991) Models for organometallic molecule-support complexes. Very large counterion modulation of cationic actinide alkyl reactivity. Organometallics 10:840

    Article  CAS  Google Scholar 

  26. Novarino E, Guerrero Rios I, van der Veer S, Meetsma A, Hessen B, Bouwkamp MW (2010) Catalyst deactivation reactions: the role of tertiary amines revisited. Organometallics 30:92

    Article  Google Scholar 

  27. Rios IG, Novarino E, van der Veer S, Hessen B, Bouwkamp MW (2009) Amine catalyzed solvent C–H bond activation as deactivation route for cationic decamethylzirconocene olefin polymerization catalysts. J Am Chem Soc 131:16658

    Article  Google Scholar 

  28. Cabrera L, Welch GC, Masuda JD, Wei P, Stephan DW (2006) Pyridine and phosphine reactions with [CPh3][B(C6F5)4]. Inorg Chim Acta 359:3066

    Article  CAS  Google Scholar 

  29. Jordan RF, Bajgur CS, Dasher WE, Rheingold AL (1987) Hydrogenation of cationic dicyclopentadienylzirconium(IV) alkyl complexes. Characterization of cationic zirconium(IV) hydrides. Organometallics 6:1041

    Article  CAS  Google Scholar 

  30. Mömming CM, Frömel S, Kehr G, Fröhlich R, Grimme S, Erker G (2009) Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates: evidence for a concerted olefin addition reaction. J Am Chem Soc 131:12280

    Article  Google Scholar 

  31. McCahill JSJ, Welch GC, Stephan DW (2007) Reactivity of “frustrated Lewis pairs”: three-component reactions of phosphines, a borane, and olefins. Angew Chem Int Ed 46:4968

    Article  CAS  Google Scholar 

  32. Dureen MA, Stephan DW (2009) Terminal alkyne activation by frustrated and classical Lewis acid/phosphine pairs. J Am Chem Soc 131:8396

    Article  CAS  Google Scholar 

  33. Chen C, Eweiner F, Wibbeling B, Fröhlich R, Senda S, Ohki Y, Tatsumi K, Grimme S, Kehr G, Erker G (2010) Exploring the limits of frustrated Lewis pair chemistry with alkynes: detection of a system that favors 1,1-carboboration over cooperative 1,2-P/B-addition. Chem Asian J 5:2199

    Article  CAS  Google Scholar 

  34. Tran SD, Tronic TA, Kaminsky W, Heinekey D, Mayer JM (2011) Metal-free carbon dioxide reduction and acidic C–H activations using a frustrated Lewis pair. Inorg Chim Acta 369:126

    Article  CAS  Google Scholar 

  35. Hill M, Wendt OF (2005) Reactivity of carbon dioxide toward zirconocene cations. Organometallics 24:5772

    Article  CAS  Google Scholar 

  36. Dureen MA, Stephan DW (2010) Reactions of boron amidinates with CO2 and CO and other small molecules. J Am Chem Soc 132:13559

    Article  CAS  Google Scholar 

  37. Janda KC, Bernstein LS, Steed JM, Novick SE, Klemperer W (1978) A microwave spectrum of the weakly bound adduct F3BCO has been reported: synthesis, microwave spectrum, and structure of ArBF3, BF3CO, and N2BF3. J Am Chem Soc 100:8074

    Article  CAS  Google Scholar 

  38. Jacobsen H, Berke H, Döring S, Kehr G, Erker G, Fröhlich R, Meyer O (1999) Lewis acid properties of tris(pentafluorophenyl)borane. Structure and bonding in L–B(C6F5)3 complexes. Organometallics 18:1724

    Article  CAS  Google Scholar 

  39. Howard WA, Trnka TM, Parkin G (1995) Synthesis and structure of (η5-C5Me5)2Zr(Se)CO, a nonclassical d0 zirconium carbonyl complex. Organometallics 14:4037

    Article  CAS  Google Scholar 

  40. Howard WA, Parkin G, Rheingold AL (1995) Non-classical carbonyl complexes of zirconium: the syntheses, characterization, and reactivities of (η5-C5Me5)2Zr(η2-E2)(CO) (E = S, Se, Te). Polyhedron 14:25

    Article  CAS  Google Scholar 

  41. Lynn MA, Bursten BE (1995) An analysis of the bonding in some ‘nonclassical’ d0 and d10 metal carbonyl complexes. Inorg Chim Acta 229:437

    Article  CAS  Google Scholar 

  42. Goldman AS, Krogh-Jespersen K (1996) Why do cationic carbon monoxide complexes have high C–O stretching force constants and short C–O bonds? Electrostatic effects, not σ-bonding. J Am Chem Soc 118:12159

    Article  CAS  Google Scholar 

  43. Berkefeld A, Piers WE, Parvez M, Castro L, Maron L, Eisenstein O (2012) Carbon monoxide activation via O-bound CO using decamethylscandocinium–hydridoborate ion pairs. J Am Chem Soc 134:10843

    Article  CAS  Google Scholar 

  44. Terao J, Kambe N (2008) Cross-coupling reaction of alkyl halides with Grignard reagents catalyzed by Ni, Pd, or Cu complexes with π-carbon ligand(s). Acc Chem Res 41:1545

    Article  CAS  Google Scholar 

  45. Kraft BM, Lachicotte RJ, Jones WD (2001) Aliphatic and aromatic carbon–fluorine bond activation with Cp*2ZrH2: mechanisms of hydrodefluorination. J Am Chem Soc 123:10973

    Article  CAS  Google Scholar 

  46. Barrett AGM, Crimmin MR, Hill MS, Hitchcock PB, Procopiou PA (2007) Trifluoromethyl coordination and C–F bond activation at calcium. Angew Chem Int Ed 46:6339

    Article  CAS  Google Scholar 

  47. Choi J, Wang DY, Kundu S, Choliy Y, Emge TJ, Krogh-Jespersen K, Goldman AS (2011) Net oxidative addition of C(sp3)–F bonds to iridium via initial C–H bond activation. Science 332:1545

    Article  CAS  Google Scholar 

  48. Birkmann B, Voss T, Geier SJ, Ulrich M, Kehr G, Erker G, Stephan DW (2010) Frustrated Lewis pairs and ring-opening of THF, dioxane, and thioxane. Organometallics 29:5310

    Article  CAS  Google Scholar 

  49. Welch GC, Masuda JD, Stephan DW (2006) Phosphonium–borate zwitterions, anionic phosphines, and dianionic phosphonium–dialkoxides via tetrahydrofuran ring-opening reactions. Inorg Chem 45:478

    Article  CAS  Google Scholar 

  50. Gerrard W, Lappert MF (1952) Fission of mixed ethers by boron trichloride. J Chem Soc 1486

    Google Scholar 

  51. Carpentier J-F, Wu Z, Lee CW, Strömberg S, Christopher JN, Jordan RF (2000) d0 Metal olefin complexes. synthesis, structures, and dynamic properties of (C5R5)2Zr(OCMe2CH2CH2CH=CH2)+ complexes: models for the elusive (C5R5)2Zr(R)(Olefin)+ intermediates in metallocene-based olefin polymerization catalysis. J Am Chem Soc 122:7750

    Article  CAS  Google Scholar 

  52. Finze M, Bernhardt E, Berkei M, Willner H, Hung J, Waymouth RM (2005) [H(OEt2)2]+ and [Ph3C]+ salts of the borate anions [B(CF3)4], [(CF3)3BCN], and [B(CN)4]. Organometallics 24:5103

    Article  CAS  Google Scholar 

  53. Vagedes D, Erker G, Fröhlich R (2002) Synthesis and structural characterization of [H(OEt2)2]+[(C3H3N2){B(C6F5)3}2] – a Brønsted acid with an imidazole-derived ‘non-coordinating’ anion. J Organomet Chem 641:148

    Article  CAS  Google Scholar 

  54. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) B–N compounds for chemical hydrogen storage. Chem Soc Rev 38:279

    Article  CAS  Google Scholar 

  55. Staubitz A, Robertson APM, Sloan ME, Manners I (2010) Ammonia–borane and related compounds as dihydrogen sources. Chem Rev 110:4023

    Article  CAS  Google Scholar 

  56. Sloan ME, Clark TJ, Manners I (2009) Homogeneous catalytic dehydrogenation/dehydrocoupling of amine borane adducts by the Rh(I) Wilkinson's complex analogue RhCl(PHCy2)3 (Cy = cyclohexyl). Inorg Chem 48:2429

    Article  CAS  Google Scholar 

  57. Templeton AC, Wuelfing MP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27

    Article  CAS  Google Scholar 

  58. Jiang Y, Berke H (2007) Dehydrocoupling of dimethylamine-borane catalysed by rhenium complexes and its application in olefin transfer-hydrogenations. Chem Commun 3571

    Google Scholar 

  59. Jiang Y, Blacque O, Fox T, Frech CM, Berke H (2009) Development of rhenium catalysts for amine borane dehydrocoupling and transfer hydrogenation of olefins. Organometallics 28:5493

    Article  CAS  Google Scholar 

  60. Keaton RJ, Blacquiere JM, Baker RT (2007) Base metal catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage. J Am Chem Soc 129:1844

    Article  CAS  Google Scholar 

  61. Friedrich A, Drees M, Schneider S (2009) Ruthenium-catalyzed dimethylamineborane dehydrogenation: stepwise metal-centered dehydrocyclization. Chem Eur J 15:10339

    Article  CAS  Google Scholar 

  62. Kawano Y, Uruichi M, Shimoi M, Taki S, Kawaguchi T, Kakizawa T, Ogino H (2009) Dehydrocoupling reactions of borane-secondary and -primary amine adducts catalyzed by Group-6 carbonyl complexes: formation of aminoboranes and borazines. J Am Chem Soc 131:14946

    Article  CAS  Google Scholar 

  63. Douglas TM, Chaplin AB, Weller AS, Yang X, Hall MB (2009) Monomeric and oligomeric amine-borane σ-complexes of rhodium. Intermediates in the catalytic dehydrogenation of amine-boranes. J Am Chem Soc 131:15440

    Article  CAS  Google Scholar 

  64. Jaska CA, Manners I (2004) Heterogeneous or homogeneous catalysis? Mechanistic studies of the rhodium-catalyzed dehydrocoupling of amine-borane and phosphine-borane adducts. J Am Chem Soc 126:9776

    Article  CAS  Google Scholar 

  65. Pun D, Lobkovsky E, Chirik PJ (2007) Amineborane dehydrogenation promoted by isolable zirconium sandwich, titanium sandwich and N2 complexes. Chem Commun 3297

    Google Scholar 

  66. Sloan ME, Staubitz A, Clark TJ, Russell CA, Lloyd-Jones GC, Manners I (2010) Homogeneous catalytic dehydrocoupling/dehydrogenation of amine–borane adducts by early transition metal, group 4 metallocene complexes. J Am Chem Soc 132:3831

    Article  CAS  Google Scholar 

  67. Miller AJM, Bercaw JE (2010) Dehydrogenation of amine–boranes with a frustrated Lewis pair. Chem Commun 1709

    Google Scholar 

  68. Stoebenau EJ, Jordan RF (2006) Nonchelated d0 zirconium-alkoxide-alkene complexes. J Am Chem Soc 128:8162

    Article  CAS  Google Scholar 

  69. Jubas GJ (2004) Heterolytic splitting of H–H, Si–H, and other σ bonds on electrophilic metal centers. Adv Inorg Chem 56:127

    Article  Google Scholar 

  70. Morris RH (1996) New intermediates in the homolytic and heterolytic splitting of hydrogen. Can J Chem 74:1907

    Article  CAS  Google Scholar 

  71. Jessop PG, Morris RH (1992) Reactions of transition metal dihydrogen complexes. Coord Chem Rev 121:155

    Article  CAS  Google Scholar 

  72. Jia G, Lau C-P (1999) Structural, acidity and chemical properties of some dihydrogen/hydride complexes of group 8 metals with cyclopentadienyls and related ligands. Coord Chem Rev 190–192:83

    Article  Google Scholar 

  73. Curtis CJ, Miedaner A, Ellis WW, DuBois DL (2002) Measurement of the hydride donor abilities of [HM(diphosphine)2]+ complexes (M = Ni, Pt) by heterolytic activation of hydrogen. J Am Chem Soc 124:1918

    Article  CAS  Google Scholar 

  74. DuBois MR, DuBois DL (2009) The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation. Chem Soc Rev 38:62

    Article  Google Scholar 

  75. Rocchini E, Mezzetti A, Ruegger H, Burckhardt U, Gramlich V, Del Zotto A, Martinuzzi P, Rigo P (1997) Heterolytic H2 activation by dihydrogen complexes. Effects of the ligand X in [M(X)H2{Ph2P(CH2)3PPh2}2]n+ (M = Ru, Os; X = CO, Cl, H). Inorg Chem 36:711

    Article  CAS  Google Scholar 

  76. Clapham SE, Hadzovic A, Morris RH (2004) Hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201

    Article  CAS  Google Scholar 

  77. Zhao X, Stephan DW (2011) Olefin–borane “van der Waals complexes”: intermediates in frustrated Lewis pair addition reactions. J Am Chem Soc 133:12448

    Article  CAS  Google Scholar 

  78. Doucet H, Ohkuma T, Murata K, Yokozawa T, Kozawa M, Katayama E, England AF, Ikariya T, Noyori R (1998) trans-[RuCl2(phosphane)2(1,2-diamine)] and chiral trans-[RuCl2 (diphosphane)(1,2-diamine)]: shelf-stable precatalysts for the rapid, productive, and stereoselective hydrogenation of ketones. Angew Chem Int Ed 37:1703

    Article  CAS  Google Scholar 

  79. Noyori R, Ohkuma T (2001) Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew Chem Int Ed 40:40

    Article  CAS  Google Scholar 

  80. Shvo Y, Czarkie D, Rahamim Y, Chodosh DF (1986) A new group of ruthenium complexes: structure and catalysis. J Am Chem Soc 108:7400

    Article  CAS  Google Scholar 

  81. Casey CP, Guan H (2009) Cyclopentadienone iron alcohol complexes: synthesis, reactivity, and implications for the mechanism of iron-catalyzed hydrogenation of aldehydes. J Am Chem Soc 131:2499

    Article  CAS  Google Scholar 

  82. Harman WH, Peters JC (2012) Reversible H2 addition across a nickel–borane unit as a promising strategy for catalysis. J Am Chem Soc 134:5080

    Article  CAS  Google Scholar 

  83. Owen GR (2012) Hydrogen atom storage upon Z-class borane ligand functions: an alternative approach to ligand cooperation. Chem Soc Rev 41:3535

    Article  CAS  Google Scholar 

  84. Conifer CM, Law DJ, Sunley GJ, Haynes A, Wells JR, White AJP, Britovsek GJP (2011) Dicarbonylrhodium(I) complexes of bipyridine ligands with proximate H-bonding substituents and their application in methyl acetate carbonylation. Eur J Inorg Chem 3511

    Google Scholar 

  85. Chen Y-XE, Metz MV, Li L, Stern CL, Marks TJ (1998) Sterically encumbered (perfluoroaryl) borane and aluminate cocatalysts for tuning cation–anion ion pair structure and reactivity in metallocene polymerization processes. A synthetic, structural, and polymerization study. J Am Chem Soc 120:6287

    Article  CAS  Google Scholar 

  86. Chen Y-XE, Cooney MJ (2003) Amphicatalytic polymerization: synthesis of stereomultibloc poly(methyl methacrylate) with diastereospecific ion pairs. J Am Chem Soc 125:7150

    Article  CAS  Google Scholar 

  87. Ning Y, Chen Y-XE (2006) Diastereospecific ion-pairing polymerization of functionalize alkenes by metallocene/Lewis acid hybrid catalysts. Macromolecules 39:7204

    Article  CAS  Google Scholar 

  88. Hartwig J (2010) Organotransition metal chemistry. University Science Books, see particularly pp 417–452

    Google Scholar 

  89. Lennon P, Rosan AM, Rosenblum MJ (1977) Metal assisted carbon–carbon bond formation. Addition of carbon nucleophiles to dicarbonyl.eta.5-cyclopentadienyl(olefin)iron cations. J Am Chem Soc 99:8426

    Article  CAS  Google Scholar 

  90. Wu Z, Jordan RF (1995) Models for the elusive Cp2Zr(R)(olefin)+. Characterization of the d0 metal olefin complex Cp2Zr(OCMe2CH2CH2CH=CH2)+. J Am Chem Soc 117:5867

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan F. Wass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wass, D.F., Chapman, A.M. (2013). Frustrated Lewis Pairs Beyond the Main Group: Transition Metal-Containing Systems. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_395

Download citation

Publish with us

Policies and ethics