Skip to main content

Selective C–H Activations Using Frustrated Lewis Pairs. Applications in Organic Synthesis

  • Chapter
  • First Online:
Frustrated Lewis Pairs II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 334))

Abstract

Frustrated Lewis pairs (FLPs), sterically encumbered Lewis acid and base combinations, gained importance due to their ability to activate molecular hydrogen. This property is used in organic synthesis to perform metal-free catalytic hydrogenation of imines, quinolines, or enamines. Moreover, it is possible to perform selective C–H activations using different sterically hindered Lewis acid/base pairs. Thus, the combination of organometallic reagents with different boranes can be used to functionalize selectively a variety of tertiary amines. By combination of sterically hindered metal amides of the type TMP-Met (TMP = 2,2,6,6-tetramethylpiperidyl, Met = Li, MgCl, ZnCl) with the Lewis-acid BF3·OEt2 it is possible to metalate selectively a large number of aromatic N-heterocycles, such as pyridines and quinolines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Lewis acid

B:

Lewis base

dba:

trans,trans-Dibenzylideneacetone

E:

Electrophile

Eq:

Equation

FLP:

Frustrated Lewis pair

Mes:

2,4,6-Trimethylphenyl

Met:

Metal

Nu:

Nucleophile

TBS:

tert-Butyldimethylsilyl

tfp:

Tris-(2-furyl)phosphine

TMP:

2,2,6,6-Tetramethylpiperidyl

References

  1. Lewis CN (1923) Valence and the structure of atoms and molecules. Chemical Catalogue Company, New York

    Google Scholar 

  2. Brown HC, Schlesinger HI, Caran SZ (1942) Studies in stereochemistry. I. Steric strains as a factor in the relative stability of some coordination compounds of boron. J Am Chem Soc 64: 325–329

    Article  CAS  Google Scholar 

  3. Manolikakes S, Karaghiosoff K, Knochel P (2012) Manuscript in preparation

    Google Scholar 

  4. Welch GC, Stephan DW (2007) Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J Am Chem Soc 129:1880–1881

    Article  CAS  Google Scholar 

  5. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126

    Article  CAS  Google Scholar 

  6. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76

    Article  CAS  Google Scholar 

  7. Stephan DW (2009) Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. Dalton Trans 17:3129–3136

    Article  Google Scholar 

  8. Greenberg S, Stephan DW (2008) Stoichiometric and catalytic activation of P–H and P–P bonds. Chem Soc Rev 37:1482–1489

    Article  CAS  Google Scholar 

  9. Erker G (2011) Organometallic frustrated Lewis pair chemistry. Dalton Trans 40:7475–7483

    Article  CAS  Google Scholar 

  10. Kehr G, Erker G (2012) 1,1-Carboboration. Chem Commun 48:1839–1850

    Article  CAS  Google Scholar 

  11. Erker G (2011) Bio-organometallic chemistry, ansa-metallocenes, and frustrated Lewis pairs: functional group chemistry at the group 4 bent metallocenes. Organometallics 30:358–368

    Article  CAS  Google Scholar 

  12. Summerin V, Schulz F, Nieger M, Leskelä M, Repo T, Rieger B (2008) Facile heterolytic H2 activation by amines and B(C6F5)3. Angew Chem Int Ed 47:6001–6003

    Google Scholar 

  13. Schulz F, Summerin V, Heikkinen S, Pedersen B, Wang C, Atsumi M, Leskelä M, Repo T, Pykkö P, Petry W, Rieger B (2011) Molecular hydrogen tweezers: structure and mechanisms by neutron diffraction, NMR, and deuterium labeling studies in solid and solution. J Am Chem Soc 133:20245–20257

    Article  CAS  Google Scholar 

  14. Schulz F, Summerin V, Leskelä M, Repo T, Rieger B (2010) Frustrated Lewis pairs: reactivities of TMS protected amines and phosphines in the presence of B(C6F5)3. Dalton Trans 39:1920–1922

    Article  CAS  Google Scholar 

  15. Eros G, Mehdi H, Papai I, Rokob TA, Kiraly P, Tarkanyi G, Soos T (2010) Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design. Angew Chem Int Ed 49:6559–6563

    Article  CAS  Google Scholar 

  16. Soos T (2011) Design of frustrated Lewis pair catalysts for metal-free and selective hydrogenation. Pure Appl Chem 83(3):667–675

    Article  CAS  Google Scholar 

  17. Eros G, Nagy K, Mehdi H, Papai I, Nagy P, Kiraly P, Tarkanyi G, Soos T (2012) Catalytic hydrogenation with frustrated Lewis pairs: selectivity achieved by size-exclusion design of Lewis acids. Chem Eur J 18:574–585

    Article  CAS  Google Scholar 

  18. Webb JD, Laberge VS, Geier SJ, Stephan DW, Crudden CM (2010) Borohydrides from organic hydrides: reactions of Hantzsch’s esters with B(C6F5)3. Chem Eur J 16:4895–4902

    Article  CAS  Google Scholar 

  19. Spies P, Schwendemann S, Lang S, Kehr G, Fröhlich R, Erken G (2008) Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. Angew Chem Int Ed 47:7543–7546

    Article  CAS  Google Scholar 

  20. Eis HJ, Wrobel JE, Ganem B (1984) Mechanism and synthetic utility of boron trifluoride etherate-promoted organolithium additions. J Am Chem Soc 106:3693–3694

    Article  CAS  Google Scholar 

  21. Eis HJ, Ganem B (1985) BF3-etherate promoted alkylation of aziridines with organocopper reagents: a new synthesis of amines. Tetrahedron Lett 26(9):1153–1156

    Article  CAS  Google Scholar 

  22. Brown HC, Racherla US, Singh SM (1984) Improved highly efficient synthesis of α, β-acetylenic ketones. Nature of the intermediate from the reaction of lithium acetylide with boron trifluoride etherate. Tetrahedron Lett 25(23):2411–2414

    Article  CAS  Google Scholar 

  23. Yamamoto H (2000) Lewis-acids in organic synthesis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  24. Metzger A, Bernhardt S, Manolikakes G, Knochel P (2010) MgCl2-accelerated addition of functionalized organozinc reagents to aldehydes, ketones, and carbon dioxide. Angew Chem Int Ed 49:4665–4668

    Article  CAS  Google Scholar 

  25. Haag B, Mosrin M, Ila H, Malakhov V, Knochel P (2011) Regio- and chemoselective metalation of arenes and heteroarenes using hindered metal amide bases. Angew Chem Int Ed 50:9794–9824

    Article  CAS  Google Scholar 

  26. Kessar SV, Singh P, Singh KN, Dutt M (1991) Lewis acid complexed heteroatom carbanions; synthesis of some α-pyridyl alcohols. J Chem Soc Chem Commun 570–571

    Google Scholar 

  27. Kessar SV, Singh P (1997) Lewis acid complexation of tertiary amines and related compounds: a strategy for α-deprotonation and stereocontrol. Chem Rev 97:721–737

    Article  CAS  Google Scholar 

  28. Kessar SV, Vohra R, Kaur NP (1991) Lewis acid complexed heteroatom carbanions; a convenient route to α-hydroxybenzyltetrahydroisoquinoline alkaloids. Tetrahedron Lett 32:3221–3224

    Article  CAS  Google Scholar 

  29. Kessar SV, Vohra R, Kaur NP, Singh KN, Singh P (1994) γ-Alkoxylactones as autounmasking synthons for a one-step construction of 1,3-oxygenated cyclopentanes. Synthesis of fredericamycin A core and spirobenzylisoquinoline alkaloids. J Chem Soc Chem Commun 1327–1328

    Google Scholar 

  30. Kessar SV, Singh P, Vohra R, Kaur NP, Singh KN (1991) Lewis acid complexed heteroatom carbanions; a new concept for α-metallation of tertiary amines. J Chem Soc Chem Commun 568–570

    Google Scholar 

  31. Kessar SV, Singh P, Singh KN, Singh SK (2001) Reactions of alkyl, benzyl and stannyl halides with Lewis acid complexed α-lithiated tertiary amines. Synlett 517–518

    Google Scholar 

  32. Kessar SV, Singh P, Singh KN, Venugopalan P, Kaur A, Bharatam PV, Sharma AK (2007) An experimental and computational study of stereoselectivity and reactivity in Lewis acid promoted lithiation-substitution of tertiary amines. J Am Chem Soc 129:4506–4507

    Article  CAS  Google Scholar 

  33. Kessar SV, Singh P, Singh KN, Kuul VK, Kumar G (1995) Anionic rearrangement of BF3-complexed N-ally1 and aryl tetrahydroisoquinolines. Tetrahedron Lett 36:8481–8484

    Article  CAS  Google Scholar 

  34. Kessar SV, Singh P, Singh KN, Bharatam PV, Sharma AK, Lata S, Kaur A (2008) A study of BF3-promoted ortho lithiation of anilines and DFT calculations on the role of fluorine–lithium interactions. Angew Chem Int Ed 47:4703–4706

    Article  CAS  Google Scholar 

  35. Schlosser M, Hartmann J (1973) Transmetalation and double metal exchange: a convenient route to organolithium compounds of the benzyl and ally1 type. Angew Chem Int Ed 12: 508–509

    Google Scholar 

  36. Kessar SV, Singh P, Singh KN, Singh SK (1999) Facile α-deprotonation–electrophilic substitution of quinuclidine and DABCO. Chem Commun 1927–1928

    Google Scholar 

  37. Ebden MR, Simpkins NS, Fox DNA (1995) Activation of benzylic amines towards regioselective metallation by borane complex formation. Tetrahedron Lett 36:8697–8700

    Article  CAS  Google Scholar 

  38. Vedejs E, Chen X (1996) Kinetic resolution of secondary alcohols. Enantioselective acylation mediated by a chiral (dimethylamino)pyridine derivative. J Am Chem Soc 118:1809–1810

    Article  CAS  Google Scholar 

  39. Vedejs E, Monahan SD (1996) Metalation of oxazole–borane complexes: a practical solution to the problem of electrocyclic ring opening of 2-lithiooxazoles. J Org Chem 61:5192–5193

    Article  CAS  Google Scholar 

  40. Iddan B (1994) Synthesis and reactions of lithiated monocyclic azoles containing two or more hetero-atoms. Part II: oxazoles. Heterocycles 37:1321–1346

    Article  Google Scholar 

  41. Vedejs E, Kendall JT (1997) Aziridine lithiation using Lewis acid activation. J Am Chem Soc 119:6941–6942

    Article  CAS  Google Scholar 

  42. Vedejs E, Fields SC, Schrimpf MR (1993) Asymmetric transformation in synthesis: chiral amino acid enolate equivalents. J Am Chem Soc 115:11612–11613

    Article  CAS  Google Scholar 

  43. Vedejs E, Fields SC, Lin S, Schrimpf MR (1995) Asymmetric transformation in boron ate complexes of amino acids. J Org Chem 60:3028–3034

    Article  CAS  Google Scholar 

  44. Ferey V, Toupet L, Le Gall T, Mioskowski C (1996) Chiral borane–amine adducts in asymmetric synthesis: alkylation of alanine derivatives. Angew Chem Int Ed 35:430–432

    Article  CAS  Google Scholar 

  45. Ferey V, Verdenne P, Toupet L, Le Gall T, Mioskowski C (1996) Asymmetric synthesis of α-alkylproline derivatives from a chiral borane–amine adduct: inversion of enantioselectivity in the presence of a crown ether. J Org Chem 61:7244–7245

    Article  CAS  Google Scholar 

  46. Ferey V, Le Gall T, Mioskowski C (1995) Aldol reactions of ethyl N-benzyl-N-methylglycinate and of its borane adduct: selective access to syn or anti α-amino-β-hydroxyesters. Chem Commun 487–488

    Google Scholar 

  47. Vögtle F (1992) Fascinating molecules in organic synthesis. Wiley, Chichester

    Google Scholar 

  48. Harmata M, Carter KW, Jones DE, Kahraman M (1996) The metallation of Troeger's base. Tetrahedron Lett 37:6267–6270

    Article  CAS  Google Scholar 

  49. Mongin F, Queginer G (2001) Advances in the directed metallation of azines and diazines (pyridines, pyrimidines, pyrazines, pyridazines, quinolines, benzodiazines and carbolines). Part 1: metallation of pyridines, quinolines and carbolines. Tetrahedron 57:4059–4090

    Article  CAS  Google Scholar 

  50. Okada K, Suzuki R, Oda M (1995) Novel boron–nitrogen containing compounds from the reaction of organolithiums with complexes between dimesitylfluoroborane and six- or five-membered aza aromatic compounds. J Chem Soc Chem Commun 2069–2070

    Google Scholar 

  51. Krasovskiy A, Krasovskaya V, Knochel P (2006) Mixed Mg/Li amides of the type R2NMgCl·LiCl as highly efficient bases for the regioselective generation of functionalized aryl and heteroaryl magnesium compounds. Angew Chem Int Ed 45:2958–2961

    Article  CAS  Google Scholar 

  52. Jaric M, Haag BA, Unsinn A, Karaghiosoff K, Knochel P (2010) Highly selective metalations of pyridines and related heterocycles using new frustrated Lewis pairs or tmp-zinc and tmp-magnesium bases with BF3·OEt2. Angew Chem Int Ed 49:5451–5455

    Article  CAS  Google Scholar 

  53. Negishi E, Valente LF, Kobayashi M (1980) Palladium-catalyzed cross-coupling reaction of homoallylic or homopropargylic organozincs with alkenyl halides as a new selective route to 1,5-dienes and 1,5-enynes. J Am Chem Soc 102:3298–3299

    Article  CAS  Google Scholar 

  54. Negishi E (1982) Palladium- or nickel-catalyzed cross coupling. A new selective method for carbon–carbon bond formation. Acc Chem Res 15:340–348

    Article  CAS  Google Scholar 

  55. Farina V, Baker SR, Benigni DA, Sapino C (1988) Palladium-catalyzed coupling between cephalosporin derivatives and unsaturated stannanes: a new ligand for palladium chemistry. Tetrahedron Lett 29:5739–5742

    Article  CAS  Google Scholar 

  56. Molander GA, Biolatto B (2003) Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions of potassium aryl- and heteroaryltrifluoroborates. J Org Chem 68:4302–4314

    Article  CAS  Google Scholar 

  57. Billingsley KL, Buchwald SL (2008) A general and efficient method for the Suzuki–Miyaura coupling of 2-pyridyl nucleophiles. Angew Chem Int Ed 47:4695–4698

    Article  CAS  Google Scholar 

  58. Knochel P, Yeh MCP, Berk S, Talbert J (1988) Synthesis and reactivity toward acyl chlorides and enones of the new highly functionalized copper reagents RCu(CN)ZnI. J Org Chem 53: 2390–2392

    Article  CAS  Google Scholar 

  59. Molander GA, Canturk B (2009) Organotrifluoroborates and monocoordinated palladium complexes as catalysts – a perfect combination for Suzuki–Miyaura coupling. Angew Chem Int Ed 48:9240–9261

    Article  CAS  Google Scholar 

  60. Höfle G, Steglich W, Vorbrüggen H (1978) 4-Dialkylaminopyridines as highly active acylation catalysts. Angew Chem Int Ed 17:569–583

    Article  Google Scholar 

  61. Jaric M, Haag BA, Manolikakes SM, Knochel P (2011) Selective and multiple functionalization of pyridines and alkaloids via Mg- and Zn-organometallic intermediates. Org Lett 13:2306–2309

    Article  CAS  Google Scholar 

  62. Fevrier FC, Smith ED, Comins DL (2005) Regioselective C-2 and C-6 substitution of (S)-nicotine and nicotine derivatives. Org Lett 7:5457–5460

    Article  CAS  Google Scholar 

  63. Wagner FF, Comins DL (2006) Regioselective 5-, 4-, and 2-substitution of (S)-6-chloronicotine and 4-substitution of (S)-5-chloronicotine. Eur J Org Chem 16:3562–3565

    Article  Google Scholar 

  64. Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS (2010) Direct C–H arylation of electron-deficient heterocycles with arylboronic acids. J Am Chem Soc 132: 13194–13196

    Article  CAS  Google Scholar 

  65. Wunderlich SH, Knochel P (2007) (tmp)2Zn·2MgCl2·2LiCl: a chemoselective base for the directed zincation of sensitive arenes and heteroarenes. Angew Chem Int Ed 46:7685–7688

    Article  CAS  Google Scholar 

  66. Jeganmohan M, Knochel P (2010) tmp4Zr: an atom-economical base for the metalation of functionalized arenes and heteroarenes. Angew Chem Int Ed 49:8520–8524

    Article  CAS  Google Scholar 

  67. Duez S, Steib AK, Manolikakes SM, Knochel P (2011) Lewis acid promoted benzylic cross-couplings of pyridines with aryl bromides. Angew Chem Int Ed 50:7686–7690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Knochel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knochel, P., Karaghiosoff, K., Manolikakes, S. (2013). Selective C–H Activations Using Frustrated Lewis Pairs. Applications in Organic Synthesis. In: Erker, G., Stephan, D. (eds) Frustrated Lewis Pairs II. Topics in Current Chemistry, vol 334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2012_394

Download citation

Publish with us

Policies and ethics