Skip to main content

Contemporary Methods in Structure Determination of Membrane Proteins by Solution NMR

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 326))

Abstract

Integral membrane proteins are vital to life, being responsible for information and material exchange between a cell and its environment. Although high-resolution structural information is needed to understand how these functions are achieved, membrane proteins remain an under-represented subset of the protein structure databank. Solution NMR is increasingly demonstrating its ability to help address this knowledge shortfall, with the development of a diverse array of techniques to counter the challenges presented by membrane proteins. Here we document the advances that are helping to define solution NMR as an effective tool for membrane protein structure determination. Developments introduced over the last decade in the production of isotope-labeled samples, reconstitution of these samples into the growing selection of NMR-compatible membrane-mimetic systems, and the approaches used for the acquisition and application of structural restraints from these complexes are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

β-OG:

β-Octyl glucoside

14-O-PC:

1,2-Di-O-tetradecyl-sn-glycero-3-phosphocholine

6-O-PC:

1,2-Di-O-hexyl-sn-glycero-3-phosphocholine

C6-DHPC:

1,2-Dihexanoyl-sn-glycero-3-phosphocholine

C7-DHPC:

1,2-Diheptanoyl-sn-glycero-3-phosphocholine

CF:

Cell-free

CHAPS:

3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate

COSY:

Correlation spectroscopy

CSA:

Chemical shift anisotropy

CTAB:

Cetyl-trimethylammonium bromide

DAGK:

Diacylglycerol kinase

DDM:

Dodecylmaltoside

DHAP:

Dihexadecyldimethylammonium bromide

DPC:

Dodecylphosphocholine

DTAB:

Dodecyl-trimethylammonium bromide

EPR:

Electron paramagnetic resonance

gA:

Gramicidin A

GpA:

Glycophorin A

GPCR:

G-protein coupled receptor

HSQC:

Heteronuclear single quantum coherence

LDAO:

Lauryldimethylamine-oxide

LMPC:

Lyso-myristoyl phosphatidylcholine

LMPG:

Lyso-myristoyl phosphatidylglycerol

LPPG:

Lyso-palmitoyl phosphatidylglycerol

MDD:

Multidimensional decomposition

MSP:

Membrane scaffold protein

MTSL:

1-Oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl-methanethiosulfonate

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser enhancement

NOESY:

Nuclear Overhauser spectroscopy

NUS:

Non-uniform sampling

Omp:

Outer membrane protein

PRE:

Paramagnetic relaxation enhancement

pSRII:

Photosensitive rhodopsin II

RCSA:

Residual chemical shift anisotropy

RDC:

Residual dipolar coupling

SDS:

Sodium dodecyl sulfate

TM:

Transmembrane

TROSY:

Transverse relaxation spectroscopy

UNC2:

Uncoupling protein 2

VDAC:

Voltage dependent anion channel

References

  1. Kim H, Melén K, Osterberg M, von Heijne G (2006) A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci USA 103:11142–11147

    Article  CAS  Google Scholar 

  2. Almen MS, Nordstrom KJV, Fredriksson R, Schioth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50

    Article  CAS  Google Scholar 

  3. Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51

    Article  CAS  Google Scholar 

  4. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  Google Scholar 

  5. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001

    Article  CAS  Google Scholar 

  6. Suh YH, Checler F (2002) Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol Rev 54:469–525

    Article  CAS  Google Scholar 

  7. Gurrath M (2001) Peptide-binding G protein-coupled receptors: new opportunities for drug design. Curr Med Chem 8:1605–1648

    CAS  Google Scholar 

  8. Landry Y, Gies JP (2008) Drugs and the molecular targets: an updated overview. Fundam Clin Pharmacol 22:1–18

    Article  CAS  Google Scholar 

  9. Yee AA, Savchenko A, Ignachenko A, Lukin J, Xu X, Skarina T, Evdokimova E, Liu CS, Semesi A, Guido V, Edwards AM, Arrowsmith CH (2005) NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J Am Chem Soc 127:16512–16517

    Article  CAS  Google Scholar 

  10. Yee AA, Gutmanas A, Arrowsmith CH (2006) Solution NMR in structural genomics. Curr Opin Struct Biol 16:611–617

    Article  CAS  Google Scholar 

  11. Snyder DA, Chen Y, Denissova NG, Acton T, Aramini JM, Ciano M, Karlin R, Liu J, Manor P, Rajan PA, Rossi P, Swapna GV, Xiao R, Rost B, Hunt J, Montelione GT (2005) Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J Am Chem Soc 127:16505–16511

    Article  CAS  Google Scholar 

  12. Baldwin AJ, Kay LE (2009) NMR spectroscopy brings invisible protein states into focus. Nat Chem Biol 5:808–814

    Article  CAS  Google Scholar 

  13. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  CAS  Google Scholar 

  14. Mittermaier AK, Kay LE (2006) Review - new tools provide new insights in NMR studies of protein dynamics. Science 312:224–228

    Article  CAS  Google Scholar 

  15. Chill JH, Naider F (2011) A solution NMR view of protein dynamics in the biological membrane. Curr Opin Struct Biol 21:627-633

    Google Scholar 

  16. Renault M, Cukkemane A, Baldus M (2010) Solid-state NMR spectroscopy on complex biomolecules. Angew Chem Int Ed 49:8346–8357

    Article  CAS  Google Scholar 

  17. Opella SJ, Marassi FM (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 104:3587–3606

    Article  CAS  Google Scholar 

  18. McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Ann Rev Biophys 38:385–403

    Article  CAS  Google Scholar 

  19. Hong M (2007) Structure, topology, and dynamics of membrane peptides and proteins from solid-state NMR spectroscopy. J Phys Chem B 111:10340–10351

    Article  CAS  Google Scholar 

  20. Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  CAS  Google Scholar 

  21. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–425

    Article  CAS  Google Scholar 

  22. Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298

    Article  CAS  Google Scholar 

  23. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  CAS  Google Scholar 

  24. Vaiphei ST, Tang Y, Montelione GT, Inouye M (2011) The use of the condensed single protein production system for isotope-labeled outer membrane proteins OmpA and OmpX in E. coli. Mol Biotechnol 47:205–210

    Article  CAS  Google Scholar 

  25. Schneider WM, Inouye M, Montelione GT, Roth MJ (2009) Independently inducible system of gene expression for condensed single protein production (cSPP) suitable for high efficiency isotope enrichment. J Struct Funct Genomics 10:219–225

    Article  CAS  Google Scholar 

  26. Suzuki M, Zhang J, Liu M, Woychik NA, Inouye M (2005) Single protein production in living cells facilitated by an mRNA interferase. Mol Cell 18:253–261

    Article  CAS  Google Scholar 

  27. Mao L, Tang Y, Vaiphei ST, Shimazu T, Kim SG, Mani R, Fakhoury E, White E, Montelione GT, Inouye M (2009) Production of membrane proteins for NMR studies using the condensed single protein (cSPP) production system. J Struct Funct Genomics 10:281–289

    Article  Google Scholar 

  28. Schneider WM, Tang Y, Vaiphei ST, Mao L, Maglaqui M, Inouye M, Roth MJ, Montelione GT (2010) Efficient condensed-phase production of perdeuterated soluble and membrane proteins. J Struct Funct Genomics 11:143–154

    Article  CAS  Google Scholar 

  29. Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60:1529–1546

    Article  CAS  Google Scholar 

  30. Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7:39–43

    Article  CAS  Google Scholar 

  31. Fan Y, Shi L, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol NMR 49:151–161

    Article  CAS  Google Scholar 

  32. Egorova-Zachernyuk TA, Bosman GJ, DeGrip WJ (2011) Uniform stable-isotope labeling in mammalian cells: formulation of a cost-effective culture medium. Appl Microbiol Biotechnol 89:397–406

    Article  CAS  Google Scholar 

  33. Takahashi H, Shimada I (2010) Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells. J Biomol NMR 46:3–10

    Article  CAS  Google Scholar 

  34. Wang DN, Safferling M, Lemieux MJ, Griffith H, Chen Y, Li XD (2003) Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. Biochim Biophys Acta 1610:23–36

    Article  CAS  Google Scholar 

  35. Duquesne K, Sturgis JN (2010) Membrane protein solubilization. Methods Mol Biol 601:205–217

    Article  CAS  Google Scholar 

  36. Mancia F, Love J (2010) High-throughput expression and purification of membrane proteins. J Struct Biol 172:85–93

    Article  CAS  Google Scholar 

  37. Columbus L, Lipfert J, Klock H, Millett I, Doniach S, Lesley SA (2006) Expression, purification, and characterization of Thermotoga maritima membrane proteins for structure determination. Protein Sci 15:961–975

    Article  CAS  Google Scholar 

  38. Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian C, Sönnichsen FD, Sanders CR (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726–1729

    Article  CAS  Google Scholar 

  39. Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31:896–908

    Article  CAS  Google Scholar 

  40. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17:768–775

    Article  CAS  Google Scholar 

  41. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    Article  CAS  Google Scholar 

  42. Laage R, Langosch D (2001) Strategies for prokaryotic expression of eukaryotic membrane proteins. Traffic 2:99–104

    Article  CAS  Google Scholar 

  43. Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371

    Article  CAS  Google Scholar 

  44. von Meyenburg K, Jørgensen BB, Michelsen O, Sørensen L, McCarthy JE (1985) Proton conduction by subunit a of the membrane-bound ATP synthase of Escherichia coli revealed after induced overproduction. EMBO J 4:2357–2363

    Google Scholar 

  45. Wagner S, Baars L, Ytterberg AJ, Klussmeier AJ, Wagner CS, Nord O, Nygren P, van Wijk K, de Gier JW (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550

    Article  CAS  Google Scholar 

  46. Klepsch MM, Persson JO, de Gier JW (2011) Consequences of the overexpression of a eukaryotic membrane protein, the human KDEL receptor, in Escherichia coli. J Mol Biol 407:532–542

    Article  CAS  Google Scholar 

  47. Drew D, Fröderberg L, Baars L, de Gier JW (2003) Assembly and overexpression of membrane proteins in Escherichia coli. Biochim Biophys Acta 1610:3–10

    Article  CAS  Google Scholar 

  48. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  Google Scholar 

  49. Steinfels E, Orelle C, Dalmas O, Penin F, Miroux B, Di Pietro A, Jault JM (2002) Highly efficient over-production in E. coli of YVcC, a multidrug-like ATP-binding cassette transporter from Bacillus subtilis. Biochim Biophys Acta 1565:1–5

    Article  CAS  Google Scholar 

  50. Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1Fo ATP synthase. FEBS J 482:215–219

    Article  CAS  Google Scholar 

  51. Kiefer H (2003) In vitro folding of alpha-helical membrane proteins. Biochim Biophys Acta 1610:57–62

    Article  CAS  Google Scholar 

  52. Junge F, Schneider B, Reckel S, Schwarz D, Dötsch V, Bernhard F (2008) Large-scale production of functional membrane proteins. Cell Mol Life Sci 65:1729–1755

    Article  CAS  Google Scholar 

  53. Grisshammer R, Tate CG (1995) Overexpression of integral membrane proteins for structural studies. Q Rev Biophys 28:315–422

    Article  CAS  Google Scholar 

  54. Bannwarth M, Schulz GE (2003) The expression of outer membrane proteins for crystallization. Biochim Biophys Acta 1610:37–45

    Article  CAS  Google Scholar 

  55. Palmieri L, Runswick MJ, Fiermonte G, Walker JE, Palmieri F (2000) Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembr 32:67–77

    Article  CAS  Google Scholar 

  56. Kiefer H, Krieger J, Olszewski JD, Von Heijne G, Prestwich GD, Breer H (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35:16077–16084

    Article  CAS  Google Scholar 

  57. Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M, Montal M, Opella SJ (2003) Three-dimensional structure of the channel-forming trans-membrane domain of virus protein “u” (Vpu) from HIV-1. J Mol Biol 333:409–424

    Article  CAS  Google Scholar 

  58. Miozzari GF, Yanofsky C (1978) Translation of the leader region of the Escherichia coli tryptophan operon. J Bacteriol 133:1457–1466

    CAS  Google Scholar 

  59. Staley JP, Kim PS (1994) Formation of a native-like subdomain in a partially folded intermediate of bovine pancreatic trypsin inhibitor. Protein Sci 3:1822–1832

    Article  CAS  Google Scholar 

  60. Ma C, Marassi FM, Jones DH, Straus SK, Bour S, Strebel K, Schubert U, Oblatt-Montal M, Montal M, Opella SJ (2002) Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci 11:546–557

    Article  CAS  Google Scholar 

  61. Crowell KJ, Franzin CM, Koltay A, Lee S, Lucchese AM, Snyder BC, Marassi FM (2003) Expression and characterization of the FXYD ion transport regulators for NMR structural studies in lipid micelles and lipid bilayers. Biochim Biophys Acta 1645:15–21

    CAS  Google Scholar 

  62. Xie XQ, Zhao J, Zheng H (2004) Expression, purification, and isotope labeling of cannabinoid CB2 receptor fragment, CB2(180–233). Protein Expr Purif 38:61–68

    Article  CAS  Google Scholar 

  63. Zheng H, Zhao J, Wang S, Lin CM, Chen T, Jones DH, Ma C, Opella S, Xie XQ (2005) Biosynthesis and purification of a hydrophobic peptide from transmembrane domains of G-protein-coupled CB2 receptor. J Pept Res 65:450–458

    Article  CAS  Google Scholar 

  64. Neumoin A, Cohen LS, Arshava B, Tantry S, Becker JM, Zerbe O, Naider F (2009) Structure of a double transmembrane fragment of a G-protein-coupled receptor in micelles. Biophys J 96:3187–3196

    Article  CAS  Google Scholar 

  65. Call ME, Wucherpfennig KW, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11:1023–1029

    Article  CAS  Google Scholar 

  66. Arevalo E, Estephan R, Madeo J, Arshava B, Dumont M, Becker JM, Naider F (2003) Biosynthesis and biophysical analysis of domains of a yeast G protein-coupled receptor. Biopolymers 71:516–531

    Article  CAS  Google Scholar 

  67. Kang C, Tian C, Sönnichsen FD, Smith JA, Meiler J, George AL Jr, Vanoye CG, Kim HJ, Sanders CR (2008) Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry 47:7999–8006

    Article  CAS  Google Scholar 

  68. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci USA 99:13560–13565

    Article  CAS  Google Scholar 

  69. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8:334–338

    Article  CAS  Google Scholar 

  70. Renault M, Saurel O, Czaplicki J, Demange P, Gervais V, Löhr F, Réat V, Piotto M, Milon A (2009) Solution state NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications. J Mol Biol 385:117–130

    Article  CAS  Google Scholar 

  71. Fernández C, Hilty C, Wider G, Güntert P, Wüthrich K (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336:1211–1221

    Article  CAS  Google Scholar 

  72. Liang B, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci USA 104:16140–16145

    Article  CAS  Google Scholar 

  73. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    Article  CAS  Google Scholar 

  74. Park SH, Prytulla S, De Angelis AA, Brown JM, Kiefer H, Opella SJ (2006) High-resolution NMR spectroscopy of a GPCR in aligned bicelles. J Am Chem Soc 128:7402–7403

    Article  CAS  Google Scholar 

  75. Schmidt P, Berger C, Scheidt HA, Berndt S, Bunge A, Beck-Sickinger AG, Huster D (2010) A reconstitution protocol for the in vitro folded human G protein-coupled Y-2 receptor into lipid environment. Biophys Chem 150:29–36

    Article  CAS  Google Scholar 

  76. Braiman MS, Stern LJ, Chao BH, Khorana HG (1987) Structure-function studies on bacteriorhodopsin. IV. Purification and renaturation of bacterio-opsin polypeptide expressed in Escherichia coli. J Biol Chem 262:9271–9276

    CAS  Google Scholar 

  77. Jekabsons MB, Echtay KS, Arechaga I, Brand MD (2003) Molecular properties of purified human uncoupling protein 2 refolded from bacterial inclusion bodies. J Bioenerg Biomembr 35:409–418

    Article  CAS  Google Scholar 

  78. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    Article  CAS  Google Scholar 

  79. Kim DM, Choi CY (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649

    Article  CAS  Google Scholar 

  80. Knapp KG, Swartz JR (2004) Cell-free production of active E. coli thioredoxin reductase and glutathione reductase. FEBS Lett 559:66–70

    Article  CAS  Google Scholar 

  81. Tyler RC, Aceti DJ, Bingman CA, Cornilescu CC, Fox BG, Frederick RO, Jeon WB, Lee MS, Newman CS, Peterson FC, Phillips GN, Shahan MN, Singh S, Song J, Sreenath HK, Tyler EM, Ulrich EL, Vinarov DA, Vojtik FC, Volkman BF, Wrobel RL, Zhao Q, Markley JL (2005) Comparison of cell-based and cell-free protocols for producing target proteins from the Arabidopsis thaliana genome for structural studies. Proteins 59:633–643

    Article  CAS  Google Scholar 

  82. Vinarov DA, Lytle BL, Peterson FC, Tyler EM, Volkman BF, Markley JL (2004) Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nat Methods 1:149–153

    Article  CAS  Google Scholar 

  83. Spirin AS (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 22:538–545

    Article  CAS  Google Scholar 

  84. Baranov VI, Spirin AS (1993) Gene-expression in cell-free system on preparative-scale. Methods Enzymol 217:123–142

    Article  CAS  Google Scholar 

  85. Koglin A, Klarnmt C, Trbovic N, Schwarz D, Schneider B, Schäfer B, Löhr F, Bernhard F, Dötsch V (2006) Combination of cell-free expression and NMR spectroscopy as a new approach for structural investigation of membrane proteins. Magn Reson Chem 44:S17–S23

    Article  CAS  Google Scholar 

  86. Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19

    Article  CAS  Google Scholar 

  87. Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable-isotope labeling of proteins for NMR analysis. J Biomol NMR 6:129–134

    Article  CAS  Google Scholar 

  88. Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mörs K, Glaubitz C, Kwiatkowski W, Jeon YH, Choe S (2010) Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci USA 107:10902–10907

    Article  CAS  Google Scholar 

  89. Abdine A, Verhoeven MA, Park KH, Ghazi A, Guittet E, Berrier C, Van Heijenoort C, Warschawski DE (2010) Structural study of the membrane protein MscL using cell-free expression and solid-state NMR. J Magn Reson 204:155–159

    Article  CAS  Google Scholar 

  90. Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löehr F, Bernhard F, Dötsch V (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43

    Article  CAS  Google Scholar 

  91. Schwarz D, Junge F, Durst F, Frölich N, Schneider B, Reckel S, Sobhanifar S, Dötsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957

    Article  CAS  Google Scholar 

  92. Staunton D, Schlinkert R, Zanetti G, Colebrook SA, Campbell ID (2006) Cell-free expression and selective isotope labelling in protein NMR. Magn Reson Chem 44:S2–S9

    Article  CAS  Google Scholar 

  93. Bakke CK, Jungbauer LM, Cavagnero S (2006) In vitro expression and characterization of native apomyoglobin under low molecular crowding conditions. Protein Expr Purif 45:381–392

    Article  CAS  Google Scholar 

  94. Ozawa K, Jergic S, Crowther JA, Thompson PR, Wijffels G, Otting G, Dixon NA (2005) Cell-free protein synthesis in an autoinduction system for NMR studies of protein-protein interactions. J Biomol NMR 32:235–241

    Article  CAS  Google Scholar 

  95. Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively 15N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093

    Article  CAS  Google Scholar 

  96. Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Ruterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580

    Article  CAS  Google Scholar 

  97. Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR 30:311–325

    Article  CAS  Google Scholar 

  98. Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr Purif 41:27–37

    Article  CAS  Google Scholar 

  99. Schwarz D, Klammt C, Koglin A, Löhr F, Schneider B, Dötsch V, Bernhard F (2007) Preparative scale cell-free expression systems: new tools for the large scale preparation of integral membrane proteins for functional and structural studies. Methods 41:355–369

    Article  CAS  Google Scholar 

  100. Berrier C, Park KH, Abes S, Bibonne A, Betton JM, Ghazi A (2004) Cell-free synthesis of a functional ion channel in the absence of a membrane and in the presence of detergent. Biochemistry 43:12585–12591

    Article  CAS  Google Scholar 

  101. Klammt C, Schwarz D, Fendler K, Haase W, Dötsch V, Bernhard F (2005) Evaluation of detergents for the soluble expression of α-helical and β-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J 272:6024–6038

    Article  CAS  Google Scholar 

  102. Trbovic N, Klammt C, Koglin A, Löhr F, Bernhard F, Dötsch V (2005) Efficient strategy for the rapid backbone assignment of membrane proteins. J Am Chem Soc 127:13504–13505

    Article  CAS  Google Scholar 

  103. Elbaz Y, Steiner-Mordoch S, Danieli T, Schuldiner S (2004) In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc Natl Acad Sci USA 101:1519–1524

    Article  CAS  Google Scholar 

  104. McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 23:1–38

    Article  CAS  Google Scholar 

  105. Le Master DM (1994) Isotope labeling in solution protein assignment and structural-analysis. Prog Nucl Magn Reson Spectrosc 26:371–419

    Article  CAS  Google Scholar 

  106. Kainosho M, Tsuji T (1982) Assignment of the 3 methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a 13C and 15N double-labeling technique - a new strategy for structural studies of proteins in solution. Biochemistry 21:6273–6279

    Article  CAS  Google Scholar 

  107. Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ (2004) A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc 126:5020–5021

    Article  CAS  Google Scholar 

  108. Shi J, Pelton JG, Cho HS, Wemmer DE (2004) Protein signal assignments using specific labeling and cell-free synthesis. J Biomol NMR 28:235–247

    Article  CAS  Google Scholar 

  109. Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P (2011) Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR 49:75–84

    Article  CAS  Google Scholar 

  110. Fernández C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580

    Article  CAS  Google Scholar 

  111. Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40

    Article  CAS  Google Scholar 

  112. Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360

    Article  CAS  Google Scholar 

  113. Linke D (2009) Detergents: An overview. Methods Enzymol 463:603–617

    Article  CAS  Google Scholar 

  114. Otzen DE (2002) Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys J 83:2219–2230

    Article  CAS  Google Scholar 

  115. Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  CAS  Google Scholar 

  116. Henry GD, Sykes BD (1992) Assignment of amide 1H and 15N NMR resonances in detergent-solubilized M13 coat protein: a model for the coat protein dimer. Biochemistry 31:5284–5297

    Article  CAS  Google Scholar 

  117. Schiksnis RA, Bogusky MJ, Tsang P, Opella SJ (1987) Structrue and dynamics of the Pf1 filamentous bacteriophage coat protein in micelles. Biochemistry 26:1373–1381

    Article  CAS  Google Scholar 

  118. Otzen DE (2011) Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta 1814:562–591

    CAS  Google Scholar 

  119. Popot JL, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922

    Article  CAS  Google Scholar 

  120. White SH, Ladokhin A, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 276:32395–32398

    Article  CAS  Google Scholar 

  121. Stanley AM, Fleming KG (2008) Process of folding proteins into membranes: challenges and progress. Arch Biochem Biophys 469:46–66

    Article  CAS  Google Scholar 

  122. Damberg P, Jarvet J, Graslund A (2001) Micellar systems as solvents in peptide and protein structure determination. Methods Enzymol 339:271–285

    Article  CAS  Google Scholar 

  123. Bordag N, Keller S (2010) α-Helical transmembrane peptides: a “divide and conquer” approach to membrane proteins. Chem Phys Lipids 163:1–26

    Article  CAS  Google Scholar 

  124. Haney EF, Hunter HN, Matsuzaki K, Vogel HJ (2009) Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta 1788:1639–1655

    Article  CAS  Google Scholar 

  125. Haney EF, Vogel HJ (2009) NMR of antimicrobial peptides. In: Webb G (ed) Annu Rep NMR Spectrosc, vol 65, pp 1–51

    Google Scholar 

  126. Löw C, Weininger U, Lee H, Schweimer K, Neundorf I, Beck-Sickinger AG, Pastor RW, Balbach J (2008) Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers. Biophys J 95:4315–4323

    Article  CAS  Google Scholar 

  127. Bourbigot S, Dodd E, Horwood C, Cumby N, Fardy L, Welch WH, Ramjan Z, Sharma S, Waring AJ, Yeaman MR, Booth V (2009) Antimicrobial peptide RP-1 structure and interactions with anionic versus zwitterionic micelles. Biopolymers 91:1–13

    Article  CAS  Google Scholar 

  128. Tulumello DV, Deber CM (2009) SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochemistry 48:12096–12103

    Article  CAS  Google Scholar 

  129. Lawrie CM, Sulistijo ES, MacKenzie KR (2010) Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes. J Mol Biol 396:924–936

    Article  CAS  Google Scholar 

  130. Wehbi H, Gasmi-SeabrooK G, Choi MY, Deber CM (2008) Positional dependence of non-native polar mutations on folding of CFTR helical hairpins. Biochim Biophys Acta 1778:79–87

    Article  CAS  Google Scholar 

  131. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA 106:1760–1765

    Article  CAS  Google Scholar 

  132. Langosch D, Brosig B, Kolmar H, Fritz HJ (1996) Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol 263:525–530

    Article  CAS  Google Scholar 

  133. Li R, Gorelik R, Nanda V, Law PD, Lear JD, DeGrado WF, Bennett JS (2004) Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes. J Biol Chem 279:26666–26673

    Article  CAS  Google Scholar 

  134. Melnyk RA, Kim S, Curran AR, Engelman DM, Bowie JU, Deber CM (2004) The affinity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range communication. J Biol Chem 279:16591–16597

    Article  CAS  Google Scholar 

  135. Partridge AW, Melnyk RA, Yang D, Bowie JU, Deber CM (2003) A transmembrane segment mimic derived from Escherichia coli diacylglycerol kinase inhibits protein activity. J Biol Chem 278:22056–22060

    Article  CAS  Google Scholar 

  136. Sobhanifar S, Schneider B, Löhr F, Gottstein D, Ikeya T, Mlynarczyk K, Pulawski W, Ghoshdastider U, Kolinski M, Filipek S, Güntert P, Bernhard F, Dötsch V (2010) Structural investigation of the C-terminal catalytic fragment of presenilin 1. Proc Natl Acad Sci USA 107:9644–9649

    Article  CAS  Google Scholar 

  137. Howell SC, Mesleh MF, Opella SJ (2005) NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry 44:5196–5206

    Article  CAS  Google Scholar 

  138. Chill JH, Louis JM, Miller C, Bax A (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 15:684–698

    Article  CAS  Google Scholar 

  139. Kallick DA, Tessmer MR, Watts CR, Li CY (1995) The use of dodecylphosphocholine micelles in solution NMR. J Magn Reson B 109:60–65

    Article  CAS  Google Scholar 

  140. MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276:131–133

    Article  CAS  Google Scholar 

  141. Traaseth NJ, Verardi R, Torgersen KD, Karim CB, Thomas DD, Veglia G (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci USA 104:14676–14681

    Article  CAS  Google Scholar 

  142. Lauterwein J, Bösch C, Brown LR, Wüthrich K (1979) Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim Biophys Acta 556:244–264

    Article  CAS  Google Scholar 

  143. Hauser H (2000) Short-chain phospholipids as detergents. Biochim Biophys Acta 1508:164–181

    Article  CAS  Google Scholar 

  144. Tausk RJ, van Esch J, Karmiggelt J, Voordouw G, Overbeek JT (1974) Physical chemical studies of short-chain lecithin homologues. II. Micellar weights of dihexanoyl- and diheptanoyllecithin. Biophys Chem 1974:184–203

    Article  Google Scholar 

  145. Gautier A, Kirkpatrick JP, Nietlispach D (2008) Solution-state NMR spectroscopy of a seven-helix transmembrane protein receptor: backbone assignment, secondary structure, and dynamics. Angew Chem Int Ed 47:7297–7300

    Article  CAS  Google Scholar 

  146. Vinogradova O, Sönnichsen F, Sanders CR (1998) On choosing a detergent for solution NMR studies of membrane proteins. J Biomol NMR 11:381–386

    Article  CAS  Google Scholar 

  147. Rossi P, Swapna GT, Huang YJ, Aramini JM, Anklin C, Conover K, Hamilton K, Xiao R, Acton TB, Ertekin A, Everett JK, Montelione GT (2010) A microscale protein NMR sample screening pipeline. J Biomol NMR 46:11–22

    Article  CAS  Google Scholar 

  148. Koehler J, Sulistijo ES, Sakakura M, Kim FJ, Ellis CD, Sanders CR (2010) Lysophospholipid micelles sustain the stability and catalytic activity of diacylglycerol kinase in the absence of lipids. Biochemistry 49:7089–7099

    Article  CAS  Google Scholar 

  149. Krueger-Koplin RD, Sorgen PL, Krueger-Koplin ST, Rivera-Torres IO, Cahill SM, Hicks DB, Grinius L, Krulwich TA, Girvin ME (2004) An evaluation of detergents for NMR structural studies of membrane proteins. J Biomol NMR 28:43–57

    Article  CAS  Google Scholar 

  150. Tian C, Vanoye CG, Kang C, Welch RC, Kim HJ, George AL, Sanders CR (2007) Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome. Biochemistry 46:11459–11472

    Article  CAS  Google Scholar 

  151. Zhang Q, Horst R, Geralt M, Ma X, Hong WX, Finn MG, Stevens RC, Wüthrich K (2008) Microscale NMR screening of new detergents for membrane protein structural biology. J Am Chem Soc 130:7357–7363

    Article  CAS  Google Scholar 

  152. Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the ζζ transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127:355–368

    Article  CAS  Google Scholar 

  153. Shenkarev ZO, Paramonov AS, Lyukmanova EN, Shingarova LN, Yakimov SA, Dubinnyi MA, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. J Am Chem Soc 132:5630–5637

    Article  CAS  Google Scholar 

  154. Zou C, Naider F, Zerbe O (2008) Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR. J Biomol NMR 42:257–269

    Article  CAS  Google Scholar 

  155. Columbus L, Lipfert J, Jambunathan K, Fox DA, Sim AY, Doniach S, Lesley SA (2009) Mixing and matching detergents for membrane protein NMR structure determination. J Am Chem Soc 131:7320–7326

    Article  CAS  Google Scholar 

  156. Lipfert J, Columbus L, Chu VB, Lesley SA, Doniach S (2007) Size and shape of detergent micelles determined by small-angle X-ray scattering. J Phys Chem B 111:12427–12438

    Article  CAS  Google Scholar 

  157. Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay L, Bishop RE, Privé GG (2004) A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 23:2931–2941

    Article  CAS  Google Scholar 

  158. Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, DeGrado WF (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–599

    Article  CAS  Google Scholar 

  159. Page RC, Lee S, Moore JD, Opella SJ, Cross TA (2009) Backbone structure of a small helical integral membrane protein: a unique structural characterization. Protein Sci 18:134–146

    CAS  Google Scholar 

  160. Chou JJ, Kaufman JD, Stahl SJ, Wingfield PT, Bax A (2002) Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. J Am Chem Soc 124:2450–2451

    Article  CAS  Google Scholar 

  161. Lee SY, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-dependent K + channel and its dependence on the lipid membrane. Proc Natl Acad Sci USA 102:15441–15446

    Article  CAS  Google Scholar 

  162. Lau TL, Partridge AW, Ginsberg MH, Ulmer TS (2008) Structure of the integrin beta3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47:4008–4016

    Article  CAS  Google Scholar 

  163. Lundquist A, Wessman P, Rennie AR, Edwards K (2008) Melittin-lipid interaction: a comparative study using liposomes, micelles and bilayer disks. Biochim Biophys Acta 1778:2210–2216

    Article  CAS  Google Scholar 

  164. Vos WL, Nazarov PV, Koehorst RB, Spruijt RB, Hemminga MA (2009) From ‘I’ to ‘L’ and back again: the odyssey of membrane-bound M13 protein. Trends Biochem Sci 34:249–255

    Article  CAS  Google Scholar 

  165. Sherratt AR, Braganza MV, Nguyen E, Ducat T, Goto NK (2009) Insights into the effect of detergents on the full-length rhomboid protease from Pseudomonas aeruginosa and its cytosolic domain. Biochim Biophys Acta 1788:2444–2453

    Article  CAS  Google Scholar 

  166. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–612

    Article  CAS  Google Scholar 

  167. Cady SD, Schmidt-Rohr K, Wang J, Soto CS, Degrado WF, Hong M (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692

    Article  CAS  Google Scholar 

  168. Cross TA, Sharma M, Yi M, Zhou HX (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36:117–125

    Article  CAS  Google Scholar 

  169. Miller C (2008) Ion channels: coughing up flu's proton channels. Nature 451:532–533

    Article  CAS  Google Scholar 

  170. Pielak RM, Schnell JR, Chou JJ (2011) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci USA 106:7379–7384

    Article  Google Scholar 

  171. Cady SD, Wang J, Wu Y, DeGrado WF, Hong M (2011) Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy. J Am Chem Soc 133:4274–4284

    Article  CAS  Google Scholar 

  172. Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768:3098–3106

    Article  CAS  Google Scholar 

  173. Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45:8453–8465

    Article  CAS  Google Scholar 

  174. Marcotte I, Auger M (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concepts Magn Reson Part A 24A:17–37

    Article  CAS  Google Scholar 

  175. Vold RR, Prosser RS, Deese AJ (1997) Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR 9:329–335

    Article  CAS  Google Scholar 

  176. Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31:8898–8905

    Article  CAS  Google Scholar 

  177. Andersson A, Mäler L (2006) Size and shape of fast-tumbling bicelles as determined by translational diffusion. Langmuir 22:2447–2449

    Article  CAS  Google Scholar 

  178. Luchette PA, Vetman TN, Prosser RS, Hancock RE, Nieh MP, Glinka CJ, Krueger S, Katsaras J (2001) Morphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study. Biochim Biophys Acta 1513:83–94

    Article  CAS  Google Scholar 

  179. Glover KJ, Whiles JA, Wu G, Yu N, Deems R, Struppe JO, Stark RE, Komives EA, Vold RR (2001) Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules. Biophys J 81:2163–2171

    Article  CAS  Google Scholar 

  180. Chou JJ, Baber JL, Bax A (2004) Characterization of phospholipid mixed micelles by translational diffusion. J Biomol NMR 29:299–308

    Article  CAS  Google Scholar 

  181. Papadopoulos E, Oglecka K, Mäler L, Jarvet J, Wright PE, Dyson HJ, Gräslund A (2006) NMR solution structure of the peptide fragment 1–30, derived from unprocessed mouse Doppel protein, in DHPC micelles. Biochemistry 45:159–166

    Article  CAS  Google Scholar 

  182. Biverståhl H, Andersson A, Gräslund A, Mäler L (2004) NMR solution structure and membrane interaction of the N-terminal sequence (1–30) of the bovine prion protein. Biochemistry 43:14940–14947

    Article  CAS  Google Scholar 

  183. Poget SF, Cahill SM, Girvin ME (2007) Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J Am Chem Soc 129:2432–2433

    Article  CAS  Google Scholar 

  184. Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28:1351–1361

    Article  CAS  Google Scholar 

  185. Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, DeGrado WF (2001) Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 98:12462–12467

    Article  CAS  Google Scholar 

  186. De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2:2332–2338

    Article  CAS  Google Scholar 

  187. Sanders CR, Landis GC (1995) Reconstitution of membrane-proteins into lipid-rich bilayered mixed micelles for NMR-studies. Biochemistry 34:4030–4040

    Article  CAS  Google Scholar 

  188. Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS, Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282:16256–16266

    Article  CAS  Google Scholar 

  189. Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, Arseniev AS (2008) Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J Biol Chem 283:29385–29395

    Article  CAS  Google Scholar 

  190. Kang C, Vanoye CG, Welch RC, Van Horn WD, Sanders CR (2010) Functional delivery of a membrane protein into oocyte membranes using bicelles. Biochemistry 49:653–655

    Article  CAS  Google Scholar 

  191. Park SH, Casagrande F, Das BB, Albrecht L, Chu M, Opella SJ (2011) Local and global dynamics of the G protein-coupled receptor CXCR1. Biochemistry 50:2371–2380

    Article  CAS  Google Scholar 

  192. Ottiger M, Bax A (1999) Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values. J Biomol NMR 13:187–191

    Article  CAS  Google Scholar 

  193. Bertelsen K, Vad B, Nielsen EH, Hansen SK, Skrydstrup T, Otzen DE, Vosegaard T, Nielsen NC (2011) Long-term-stable ether-lipid vs conventional ester-lipid bicelles in oriented solid-state NMR: altered structural information in studies of antimicrobial peptides. J Phys Chem B 115:1767–1774

    Article  CAS  Google Scholar 

  194. Struppe J, Whiles JA, Vold RR (2000) Acidic phospholipid bicelles: a versatile model membrane system. Biophys J 78:281–289

    Article  CAS  Google Scholar 

  195. Losonczi JA, Prestegard JH (1998) Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. J Biomol NMR 12:447–451

    Article  CAS  Google Scholar 

  196. Anglister J, Grzesiek S, Ren H, Klee CB, Bax A (1993) Isotope-edited multidimensional NMR of calcineurin-B in the presence of the non-deuterated detergent CHAPS. J Biomol NMR 3:121–126

    Article  CAS  Google Scholar 

  197. Wu H, Su K, Guan X, Sublette ME, Stark RE (2010) Assessing the size, stability, and utility of isotropically tumbling bicelle systems for structural biology. Biochim Biophys Acta 1798:482–488

    Article  CAS  Google Scholar 

  198. Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem 284:327–333

    Article  CAS  Google Scholar 

  199. Denisov IG, McLean MA, Shaw AW, Grinkova YV, Sligar SG (2005) Thermotropic phase transition in soluble nanoscale lipid bilayers. J Phys Chem B 109:15580–15588

    Article  CAS  Google Scholar 

  200. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584:1721–1727

    Article  CAS  Google Scholar 

  201. Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35:556–560, 562–563

    Google Scholar 

  202. Bayburt TH, Sligar SG (2010) Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers. Protein Sci 12:2476–2481

    Article  CAS  Google Scholar 

  203. Kijac AZ, Li Y, Sligar SG, Rienstra CM (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46:13696–13703

    Article  CAS  Google Scholar 

  204. Lyukmanova EN, Shenkarev ZO, Paramonov AS, Sobol AG, Ovchinnikova TV, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2008) Lipid-protein nanoscale bilayers: a versatile medium for NMR investigations of membrane proteins and membrane-active peptides. J Am Chem Soc 130:2140–2141

    Article  CAS  Google Scholar 

  205. Glück JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060–12061

    Article  CAS  Google Scholar 

  206. Kobashigawa Y, Harada K, Yoshida N, Ogura K, Inagaki F (2011) Phosphoinositide-incorporated lipid-protein nanodiscs: a tool for studying protein-lipid interactions. Anal Biochem 410:77–83

    Article  CAS  Google Scholar 

  207. Shenkarev ZO, Lyukmanova EN, Solozhenkin OI, Gagnidze IE, Nekrasova OV, Chupin VV, Tagaev AA, Yakimenko ZA, Ovchinnikova TV, Kirpichnikov MP, Arseniev AS (2009) Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides. Biochemistry (Moscow) 74:756–765

    Article  CAS  Google Scholar 

  208. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231

    Article  CAS  Google Scholar 

  209. Shenkarev ZO, Lyukmanova EN, Paramonov AS, Shingarova LN, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132:5628–5629

    Article  CAS  Google Scholar 

  210. Yoshiura C, Kofuku Y, Ueda T, Mase Y, Yokogawa M, Osawa M, Terashima Y, Matsushima K, Shimada I (2010) NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers. J Am Chem Soc 132:6768–6777

    Article  CAS  Google Scholar 

  211. Tribet C, Audebert R, Popot JL (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  212. Sanders CR, Hoffmann A, Grayn DN, Keyes MH, Ellis CD (2004) French swimwear for membrane proteins. Chembiochem 5:423–426

    Article  CAS  Google Scholar 

  213. Popot JL, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Herve P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574

    Article  CAS  Google Scholar 

  214. Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  Google Scholar 

  215. Tribet C, Diab C, Dahmane T, Zoonens M, Popot JL, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  Google Scholar 

  216. Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell HJ, Kleinschmidt JH, Popot JL (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961

    Article  CAS  Google Scholar 

  217. Gorzelle BM, Hoffman AK, Keyes MH, Gray DN, Ray DG, Sanders CR (2002) Amphipols can support the activity of a membrane enzyme. J Am Chem Soc 124:11594–11595

    Article  CAS  Google Scholar 

  218. Martinez KL, Gohon Y, Corringer PJ, Tribet C, Mérola F, Changeux JP, Popot JL (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528:251–256

    Article  Google Scholar 

  219. Dahmane T, Damian M, Mary S, Popot JL, Banéres JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521

    Article  CAS  Google Scholar 

  220. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Banéres JL (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057

    Article  CAS  Google Scholar 

  221. Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898

    Article  CAS  Google Scholar 

  222. Wand AJ, Ehrhardt M, Flynn P (1998) High-resolution NMR of encapsulated proteins dissolved in low-viscosity fluids. Proc Natl Acad Sci USA 95:15299–15302

    Article  CAS  Google Scholar 

  223. Babu CR, Flynn PF, Wand AJ (2003) Preparation, characterization, and NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids. J Biomol NMR 25:313–323

    Article  CAS  Google Scholar 

  224. Babu CR, Flynn PF, Wand AJ (2001) Validation of protein structure from preparations of encapsulated proteins dissolved in low viscosity fluids. J Am Chem Soc 123:2691–2692

    Article  CAS  Google Scholar 

  225. Kielec JM, Valentine KG, Wand AJ (2010) A method for solution NMR structural studies of large integral membrane proteins: reverse micelle encapsulation. Biochim Biophys Acta 1798:150–160

    Article  CAS  Google Scholar 

  226. Peterson RW, Lefebvre BG, Wand AJ (2005) High-resolution NMR studies of encapsulated proteins in liquid ethane. J Am Chem Soc 127:10176–10177

    Article  CAS  Google Scholar 

  227. Van Horn WD, Ogilvie ME, Flynn PF (2008) Use of reverse micelles in membrane protein structural biology. J Biomol NMR 40:203–211

    Article  CAS  Google Scholar 

  228. Kielec JM, Valentine KG, Babu CR, Wand AJ (2009) Reverse micelles in integral membrane protein structural biology by solution NMR spectroscopy. Structure 17:345–351

    Article  CAS  Google Scholar 

  229. Binks BP, Chatenay D, Nicot C, Urbach W, Waks M (1989) Structural parameters of the myelin transmembrane proteolipid in reverse micelles. Biophys J 55:949–955

    Article  CAS  Google Scholar 

  230. Flynn PF, Mattiello DL, Hill HDW, Wand AJ (2000) Optimal use of cryogenic probe technology in NMR studies of proteins. J Am Chem Soc 122:4823–4824

    Article  CAS  Google Scholar 

  231. Krüger J, Fischer WB (2010) Structural implications of mutations assessed by molecular dynamics: Vpu(1–32) from HIV-1. Eur Biophys J 39:1069–1077

    Article  CAS  Google Scholar 

  232. Stanczak P, Horst R, Serrano P, Wüthrich K (2009) NMR characterization of membrane protein-detergent micelle solutions by use of microcoil equipment. J Am Chem Soc 131:18450–18456

    Article  CAS  Google Scholar 

  233. Lee D, Hilty C, Wider G, Wüthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178:72–76

    Article  CAS  Google Scholar 

  234. Maslennikov I, Kefala G, Johnson C, Riek R, Choe S, Kwiatkowski W (2007) NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes. BMC Struct Biol 7:74

    Article  CAS  Google Scholar 

  235. Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes - a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46:131–155

    Article  CAS  Google Scholar 

  236. McDonnell PA, Shon K, Kim Y, Opella SJ (1993) fd coat protein-structure in membrane environments. J Mol Biol 233:447–463

    Article  CAS  Google Scholar 

  237. Olson DL, Peck TL, Webb AG, Magin RL, Sweedler JV (1995) High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270:1967–1970

    Article  CAS  Google Scholar 

  238. Peck TL, Magin RL, Laterbur PC (1995) Design and analysis of microcoils for NMR spectroscopy. J Magn Reson B 108:114–124

    Article  CAS  Google Scholar 

  239. Webb AG, Grant SC (1996) Signal-to-noise and magnetic susceptibility trade-offs in solenoidal microcoils for NMR. J Magn Reson B 113:83–87

    Article  CAS  Google Scholar 

  240. Li Y, Logan TT, Edison AS, Webb A (2003) Design of small volume HX and triple-resonance probes for improved limits of detection in protein NMR experiments. J Magn Reson 164:128–135

    Article  CAS  Google Scholar 

  241. Peti W, Norcross J, Eldridge G, O'Neil-Johnson M (2004) Biomolecular NMR using a microcoil NMR probe - new technique for the chemical shift assignment of aromatic side chains in proteins. J Am Chem Soc 126:5873–5878

    Article  CAS  Google Scholar 

  242. Aramini JM, Rossi P, Anklin C, Xiao R, Montelione GT (2007) Microgram-scale protein structure determination by NMR. Nat Methods 4:491–493

    Article  CAS  Google Scholar 

  243. Wu Y, Shih SC, Goto NK (2007) Probing the structure of the Ff bacteriophage major coat protein transmembrane helix dimer by solution NMR. Biochim Biophys Acta 1768:3206–3215

    Article  CAS  Google Scholar 

  244. King G, Oates J, Patel D, van den Berg HA, Dixon AM (2011) Towards a structural understanding of the smallest known oncoprotein: investigation of the bovine papillomavirus E5 protein using solution-state NMR. Biochim Biophys Acta 1808:1493–1501

    Article  CAS  Google Scholar 

  245. Fleming KG (2002) Standardizing the free energy change of transmembrane helix–helix interactions. J Mol Biol 323:563–571

    Article  CAS  Google Scholar 

  246. Strop P, Brunger AT (2005) Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci 14:2207–2211

    Article  CAS  Google Scholar 

  247. Oxenoid K, Kim HJ, Jacob J, Sönnichsen FD, Sanders CR (2004) NMR assignments for a helical 40 kDa membrane protein. J Am Chem Soc 126:5048–5049

    Article  CAS  Google Scholar 

  248. Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10:585–592

    Article  CAS  Google Scholar 

  249. Lian LY, Middleton DA (2001) Labelling approaches for protein structural studies by solution-state and solid-state NMR. Prog Nucl Magn Reson Spectrosc 39:171–190

    Article  CAS  Google Scholar 

  250. Löhr F, Katsemi V, Hartleib J, Günther U, Rüterjans H (2003) A strategy to obtain backbone resonance assignments of deuterated proteins in the presence of incomplete amide 2H/1H back-exchange. J Biomol NMR 25:291–311

    Article  Google Scholar 

  251. Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36:1389–1401

    Article  CAS  Google Scholar 

  252. Venters RA, Metzler WJ, Spicer LD, Mueller L, Farmer BT (1995) Use of 1HN NOES to determine protein global folds in perdeuterated proteins. J Am Chem Soc 117:9592–9593

    Article  CAS  Google Scholar 

  253. Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164

    Article  CAS  Google Scholar 

  254. Metzler W, Wittekind MJ, Goldfarb V, Mueller L, Farmer BT (1996) Incorporation of 1H/13C/15N-{Ile, Leu, Val} into a perdeuterated, 15N-labeled protein: potential in structure determination of large proteins by NMR. J Am Chem Soc 118:6800–6801

    Article  CAS  Google Scholar 

  255. Zheng D, Huang YJ, Moseley HNB, Xiao R, Aramini J, Swapna GVT, Montelione GT (2003) Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci 12:1232–1246

    Article  CAS  Google Scholar 

  256. Kay LE (2011) Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. J Magn Reson 210:159–170

    Article  CAS  Google Scholar 

  257. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46:75–87

    Article  CAS  Google Scholar 

  258. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem 6:1567–1577

    Article  CAS  Google Scholar 

  259. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N, 13C, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  CAS  Google Scholar 

  260. Gardner KH, Kay LE (1997) Production and incorporation of 15N, 13C, 2H (1H-δ 1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600

    Article  CAS  Google Scholar 

  261. Hilty C, Fernández C, Wider G, Wüthrich K (2002) Side chain NMR assignments in the membrane protein OmpX reconstituted in DHPC micelles. J Biomol NMR 23:289–301

    Article  CAS  Google Scholar 

  262. Shih SC, Stoica I, Goto NK (2008) Investigation of the utility of selective methyl protonation for determination of membrane protein structures. J Biomol NMR 42:49–58

    Article  CAS  Google Scholar 

  263. Ayala I, Sounier R, Usé N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119

    Article  CAS  Google Scholar 

  264. Godoy-Ruiz R, Guo C, Tugarinov V (2010) Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins. J Am Chem Soc 132:18340–18350

    Article  CAS  Google Scholar 

  265. Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429

    Article  CAS  Google Scholar 

  266. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769

    Article  CAS  Google Scholar 

  267. Fischer M, Kloiber K, Häusler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem 8:610–612

    Article  CAS  Google Scholar 

  268. Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for 13C, 1H labeling at the Ile-gamma 2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135

    Article  CAS  Google Scholar 

  269. Takeda M, Ikeya T, Güntert P, Kainosho M (2007) Automated structure determination of proteins with the SAIL-FLYA NMR method. Nat Protoc 2:2896–2902

    Article  CAS  Google Scholar 

  270. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  CAS  Google Scholar 

  271. Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102

    Article  CAS  Google Scholar 

  272. Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE (2010) The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868-872

    Google Scholar 

  273. Imai S, Osawa M, Takeuchi K, Shimada I (2010) Structural basis underlying the dual gate properties of KcsA. Proc Natl Acad Sci USA 107:6216–6221

    Article  CAS  Google Scholar 

  274. Bodner CR, Dobson CM, Bax A (2009) Multiple tight phospholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy. J Mol Biol 390:775–790

    Article  CAS  Google Scholar 

  275. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112

    Article  CAS  Google Scholar 

  276. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  CAS  Google Scholar 

  277. Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. J Am Chem Soc 120:6394–6400

    Article  CAS  Google Scholar 

  278. Yang D, Kay LE (1999) TROSY triple-resonance four-dimensional NMR spectroscopy of a 46 ns tumbling protein. J Am Chem Soc 121:2571–2575

    Article  CAS  Google Scholar 

  279. Yang D, Kay LE (1999) Improved 1HN-detected triple resonance TROSY-based experiments. J Biomol NMR 13:3–10

    Article  CAS  Google Scholar 

  280. Permi P, Annila A (2004) Coherence transfer in proteins. Prog Nucl Magn Reson Spectrosc 44:97–137

    Article  CAS  Google Scholar 

  281. Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96:4918–4923

    Article  CAS  Google Scholar 

  282. Riek R, Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) Solution NMR techniques for large molecular and supramolecular structures. J Am Chem Soc 124:12144–12153

    Article  CAS  Google Scholar 

  283. Pervushin K, Vögeli B, Eletsky A (2002) Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902

    Article  CAS  Google Scholar 

  284. Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146

    Article  CAS  Google Scholar 

  285. Tian C, Karra MD, Ellis CD, Jacob J, Oxenoid K, Sönnichsen F, Sanders CR (2005) Membrane protein preparation for TROSY NMR screening. Methods Enzymol 394:321–334

    Article  CAS  Google Scholar 

  286. Page RC, Moore JD, Nguyen HB, Sharma M, Chase R, Gao FP, Mobley CK, Sanders CR, Ma L, Sönnichsen FD, Lee S, Howell SC, Opella SJ, Cross TA (2006) Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J Struct Funct Genomics 7:51–64

    Article  CAS  Google Scholar 

  287. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283:6950–6956

    Article  CAS  Google Scholar 

  288. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  CAS  Google Scholar 

  289. Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852

    Article  CAS  Google Scholar 

  290. Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  CAS  Google Scholar 

  291. Tugarinov V, Ollerenshaw JE, Kay LE (2005) Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme. J Am Chem Soc 127:8214–8225

    Article  CAS  Google Scholar 

  292. Velyvis A, Yang YR, Schachman HK, Kay LE (2007) A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase. Proc Natl Acad Sci USA 104:8815–8820

    Article  CAS  Google Scholar 

  293. Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878

    Article  CAS  Google Scholar 

  294. Tugarinov V, Kay LE (2003) Side chain assignments of Ile delta 1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc 125:5701–5706

    Article  CAS  Google Scholar 

  295. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  CAS  Google Scholar 

  296. Xu Y, Liu M, Simpson PJ, Isaacson R, Cota E, Marchant J, Yang D, Zhang X, Freemont P, Matthews S (2009) Automated assignment in selectively methyl-labeled proteins. J Am Chem Soc 131:9480–9481

    Article  CAS  Google Scholar 

  297. Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105:15370–15375

    Article  CAS  Google Scholar 

  298. Yu L, Sun C, Song D, Shen J, Xu N, Gunasekera A, Hajduk PJ, Olejniczak ET (2005) Nuclear magnetic resonance structural studies of a potassium channel-charybdotoxin complex. Biochemistry 44:15834–15841

    Article  CAS  Google Scholar 

  299. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  CAS  Google Scholar 

  300. Rovnyak D, Frueh DP, Sastry M, Sun ZY, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21

    Article  CAS  Google Scholar 

  301. Barna JCJ, Laue ED (1987) Conventional and exponential sampling for 2D NMR experiments with application to a 2D NMR-spectrum of a protein. J Magn Reson 75:384–389

    CAS  Google Scholar 

  302. Gryk MR, Vyas J, Maciejewski MW (2010) Biomolecular NMR data analysis. Prog Nucl Magn Reson Spectrosc 56:329–345

    Article  CAS  Google Scholar 

  303. Sibisi S, Skilling J, Brereton R, Laue E, Staunton J (1984) Maximum-entropy signal processing in practical NMR spectroscopy. Nature 311:446–447

    Article  CAS  Google Scholar 

  304. Donoho DL, Johnstone IM, Stern AS, Hoch JC (1990) Does the maximum-entropy method improve sensitivity. Proc Natl Acad Sci USA 87:5066–5068

    Article  CAS  Google Scholar 

  305. Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. Chemphyschem 10:1356–1368

    Article  CAS  Google Scholar 

  306. Tugarinov V, Kay L, Ibraghimov I, Orekhov V (2005) High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127:2767–2775

    Article  CAS  Google Scholar 

  307. Orekhov VY, Ibraghimov I, Billeter M (2001) MUNIN: a new approach to multi-dimensional NMR spectra interpretation. J Biomol NMR 20:49–60

    Article  CAS  Google Scholar 

  308. Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  CAS  Google Scholar 

  309. Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14

    Article  CAS  Google Scholar 

  310. Hiller S, Ibraghimov I, Wagner G, Orekhov VY (2009) Coupled decomposition of four-dimensional NOESY spectra. J Am Chem Soc 131:12970–12978

    Article  CAS  Google Scholar 

  311. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  CAS  Google Scholar 

  312. Bax A, Tjandra N (1997) High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. J Biomol NMR 10:289–292

    Article  CAS  Google Scholar 

  313. Tycko R, Blanco FJ, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122:9340–9341

    Article  CAS  Google Scholar 

  314. Chou JJ, Gaemers S, Howder B, Louis JM, Bax A (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR 21:377–382

    Article  CAS  Google Scholar 

  315. Sass HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18:303–309

    Article  CAS  Google Scholar 

  316. Liu Y, Prestegard JH (2010) A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins. J Biomol NMR 47:249–258

    Article  CAS  Google Scholar 

  317. Mesleh MF, Veglia G, DeSilva TM, Marassi FM, Opella SJ (2002) Dipolar waves as NMR maps of protein structure. J Am Chem Soc 124:4206–4207

    Article  CAS  Google Scholar 

  318. Lee S, Mesleh MF, Opella SJ (2003) Structure and dynamics of a membrane protein in micelles from three solution NMR experiments. J Biomol NMR 26:327–334

    Article  CAS  Google Scholar 

  319. Jones DH, Opella SJ (2004) Weak alignment of membrane proteins in stressed polyacrylamide gels. J Magn Reson 171:258–269

    Article  CAS  Google Scholar 

  320. Cierpicki T, Bushweller JH (2004) Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins. J Am Chem Soc 126:16259–16266

    Article  CAS  Google Scholar 

  321. Meier S, Häussinger D, Grzesiek S (2002) Charged acrylamide copolymer gels as media for weak alignment. J Biomol NMR 24:351–356

    Article  CAS  Google Scholar 

  322. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Biol 5:1065–1074

    Article  CAS  Google Scholar 

  323. Park SH, Son WS, Mukhopadhyay R, Valafar H, Opella SJ (2009) Phage-induced alignment of membrane proteins enables the measurement and structural analysis of residual dipolar couplings with dipolar waves and lambda-maps. J Am Chem Soc 131:14140–14141

    Article  CAS  Google Scholar 

  324. Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA 104:6644–6648

    Article  CAS  Google Scholar 

  325. Lorieau J, Yao L, Bax A (2008) Liquid crystalline phase of G-tetrad DNA for NMR study of detergent-solubilized proteins. J Am Chem Soc 130:7536–7537

    Article  CAS  Google Scholar 

  326. Wang J, Pielak RM, McClintock MA, Chou JJ (2009) Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16:1267–1271

    Article  CAS  Google Scholar 

  327. Kamen DE, Cahill SM, Girvin ME (2007) Multiple alignment of membrane proteins for measuring residual dipolar couplings using lanthanide ions bound to a small metal chelator. J Am Chem Soc 129:1846–1847

    Article  CAS  Google Scholar 

  328. Contreras M, Ubach J, Millet O, Rizo J, Pons M (1999) Measurement of one bond dipolar couplings through lanthanide-induced orientation of a calcium-binding protein. J Am Chem Soc 121:8947–8948

    Article  CAS  Google Scholar 

  329. Pintacuda G, Moshref A, Leonchiks A, Sharipo A, Otting G (2004) Site-specific labelling with a metal chelator for protein-structure refinement. J Biomol NMR 29:351–361

    Article  CAS  Google Scholar 

  330. Ikegami T, Verdier L, Sakhaii P, Grimme S, Pescatore B, Saxena K, Fiebig K, Griesinger C (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349

    Article  CAS  Google Scholar 

  331. Ma C, Opella SJ (2000) Lanthanide ions bind specifically to an added “EF-hand” and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson 146:381–384

    Article  CAS  Google Scholar 

  332. Johansson MU, Alioth S, Hu K, Walser R, Koebnik R, Pervushin K (2007) A minimal transmembrane beta-barrel platform protein studied by nuclear magnetic resonance. Biochemistry 46:1128–1140

    Article  CAS  Google Scholar 

  333. Haberz P, Rodriguez-Castaneda F, Junker J, Becker S, Leonov A, Griesinger C (2006) Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org Lett 8:1275–1278

    Article  CAS  Google Scholar 

  334. Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540

    Article  CAS  Google Scholar 

  335. Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15:563–570

    Article  CAS  Google Scholar 

  336. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson Spectrosc 46:23–61

    Article  CAS  Google Scholar 

  337. Cierpicki T, Liang B, Tamm LK, Bushweller JH (2006) Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A. J Am Chem Soc 128:6947–6951

    Article  CAS  Google Scholar 

  338. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102:10870–10875

    Article  CAS  Google Scholar 

  339. Hus JC, Salmon L, Bouvignies G, Lotze J, Blackledge M, Brüschweiler R (2008) 16-Fold degeneracy of peptide plane orientations from residual dipolar couplings: analytical treatment and implications for protein structure determination. J Am Chem Soc 130:15927–15937

    Article  CAS  Google Scholar 

  340. Meiler J, Blomberg N, Nilges M, Griesinger C (2000) A new approach for applying residual dipolar couplings as restraints in structure elucidation. J Biomol NMR 16:245–252

    Article  CAS  Google Scholar 

  341. Skrynnikov NR, Kay LE (2000) Assessment of molecular structure using frame-independent orientational restraints derived from residual dipolar couplings. J Biomol NMR 18:239–252

    Article  CAS  Google Scholar 

  342. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–738

    Article  CAS  Google Scholar 

  343. Clore GM, Gronenborn AM, Tjandra N (1998) Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. J Magn Reson 131:159–162

    Article  CAS  Google Scholar 

  344. Losonczi JA, Andrec M, Fischer MW, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138:334–342

    Article  CAS  Google Scholar 

  345. Fischer MW, Losonczi JA, Weaver JL, Prestegard JH (1999) Domain orientation and dynamics in multidomain proteins from residual dipolar couplings. Biochemistry 38:9013–9022

    Article  CAS  Google Scholar 

  346. Chill JH, Louis JM, Delaglio F, Bax A (2007) Local and global structure of the monomeric subunit of the potassium channel KcsA probed by NMR. Biochim Biophys Acta 1768:3260–3270

    Article  CAS  Google Scholar 

  347. Brüschweiler R, Liao X, Wright PE (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268:886–889

    Article  CAS  Google Scholar 

  348. Al-Hashimi HM, Valafar H, Terrell M, Zartler ER, Eidsness MK, Prestegard JH (2000) Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J Magn Reson 143:402–406

    Article  CAS  Google Scholar 

  349. Ramirez BE, Bax A (1998) Modulation of the alignment tensor of macromolecules dissolved in a dilute liquid crystalline medium. J Am Chem Soc 120:9106–9107

    Article  CAS  Google Scholar 

  350. Skrynnikov NR, Goto NK, Yang D, Choy WY, Tolman JR, Mueller GA, Kay LE (2000) Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J Mol Biol 295:1265–1273

    Article  CAS  Google Scholar 

  351. Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G (2011) Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins. J Am Chem Soc 133:2232–2241

    Article  CAS  Google Scholar 

  352. Mesleh MF, Lee S, Veglia G, Thiriot DS, Marassi FM, Opella SJ (2003) Dipolar waves map the structure and topology of helices in membrane proteins. J Am Chem Soc 125:8928–8935

    Article  CAS  Google Scholar 

  353. Mesleh MF, Opella SJ (2003) Dipolar waves as NMR maps of helices in proteins. J Magn Reson 163:288–299

    Article  CAS  Google Scholar 

  354. Franzin CM, Yu J, Thai K, Choi J, Marassi FM (2005) Correlation of gene and protein structures in the FXYD family proteins. J Mol Biol 354:743–750

    Article  CAS  Google Scholar 

  355. Annila A, Aitio H, Thulin E, Drakenberg T (1999) Recognition of protein folds via dipolar couplings. J Biomol NMR 14:223–230

    Article  CAS  Google Scholar 

  356. Chou JJ, Li S, Bax A (2000) Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings. J Biomol NMR 18:217–227

    Article  CAS  Google Scholar 

  357. Delaglio F, Kontaxis G, Bax A (2000) Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc 122:2142–2143

    Article  CAS  Google Scholar 

  358. Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D (2010) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018

    Article  CAS  Google Scholar 

  359. Solomon I, Bloembergen N (1956) Nuclear magnetic interactions in the HF molecule. J Chem Phys 25:261–266

    Article  CAS  Google Scholar 

  360. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365

    Article  CAS  Google Scholar 

  361. Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE (2001) Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc 123:9843–9847

    Article  CAS  Google Scholar 

  362. Iwahara J, Tang CD, Clore GM (2007) Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson 184:185–195

    Article  CAS  Google Scholar 

  363. Iwahara J, Schwieters CD, Clore GM (2004) Ensemble approach for NMR structure refinement against H-1 paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc 126:5879–5896

    Article  CAS  Google Scholar 

  364. Keizers PM, Ubbink M (2011) Paramagnetic tagging for protein structure and dynamics analysis. Prog Nucl Magn Reson Spectrosc 58:88–96

    Article  CAS  Google Scholar 

  365. Su XC, Otting G (2010) Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46:101–112

    Article  CAS  Google Scholar 

  366. Teriete P, Franzin CM, Choi J, Marassi FM (2007) Structure of the Na, K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46:6774–6783

    Article  CAS  Google Scholar 

  367. Liang B, Bushweller JH, Tamm LK (2006) Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc 128:4389–4397

    Article  CAS  Google Scholar 

  368. Roosild TT, Greenwald J, Vega M, Castronovo S, Riek R, Choe S (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307:1317–1321

    Article  CAS  Google Scholar 

  369. Guo Z, Cascio D, Hideg K, Kálái T, Hubbell WL (2007) Structural determinants of nitroxide motion in spin-labeled proteins: tertiary contact and solvent-inaccessible sites in helix G of T4 lysozyme. Prot Sci 16:1069–1086

    Article  CAS  Google Scholar 

  370. Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39:8396–8405

    Article  CAS  Google Scholar 

  371. Mchaourab HA, Lietzow MA, Hideg KJ, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme, correlation with protein structure and dynamics. Biochemistry 35:7692–7704

    Article  CAS  Google Scholar 

  372. Lindberg M, Gräslund A (2001) The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR. FEBS Lett 497:39–44

    Article  CAS  Google Scholar 

  373. Tzeng J, Lee BL, Sykes BD, Fliegel L (2010) Structural and functional analysis of transmembrane segment VI of the NHE1 isoform of the Na+/H + exchanger. J Biol Chem 285:36656–36665

    Article  CAS  Google Scholar 

  374. Cook GA, Opella SJ (2011) Secondary structure, dynamics, and architecture of the p7 membrane protein from hepatitis C virus by NMR spectroscopy. Biochim Biophys Acta 1808:1448–1453

    Article  CAS  Google Scholar 

  375. Papavoine CH, Aelen JM, Konings RN, Hilbers CW, Van de Ven FJ (1995) NMR studies of the major coat protein of the bacteriophage M13. Structural information of gVIIIp in dodecylphosphocoline micelles. Eur J Biochem 232:490–500

    Article  CAS  Google Scholar 

  376. Williams KA, Farrow NA, Deber CM, Kay LE (1996) Structure and dynamics of bacteriophage IKe major coat protein in LMPG micelles by solution NMR. Biochemistry 35:5145–5157

    Article  CAS  Google Scholar 

  377. Papavoine CH, Konings RN, Hilbers CW, Van de Ven FJ (1994) Location of M13 coat protein in sodium dodecyl-sulfate micelles as determined by NMR. Biochemistry 33:12990–12997

    Article  CAS  Google Scholar 

  378. Zamoon J, Nitu F, Karim C, Thomas DD, Veglia G (2005) Mapping the interaction surface of a membrane protein: unveiling the conformational switch of phospholamban in calcium pump regulation. Proc Natl Acad Sci USA 102:4747–4752

    Article  CAS  Google Scholar 

  379. Brown LR, Braun W, Kuman A, Wüthrich K (1982) High-resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophys J 37:319–328

    Article  CAS  Google Scholar 

  380. Brown LR, Bosch C, Wüthrich K (1981) Location and orientation relative to the micelle surface for glucagon in mixed micelles with dodecylphosphocholine: EPR and NMR studies. Biochim Biophys Acta 642:296–312

    Article  CAS  Google Scholar 

  381. Neumoin A, Arshava B, Becker J, Zerbe O, Naider F (2007) NMR studies in dodecylphosphocholine of a fragment containing the seventh transmembrane helix of a G-protein-coupled receptor from Saccharomyces cerevisiae. Biophys J 93:467–482

    Article  CAS  Google Scholar 

  382. Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17:603–616

    Article  CAS  Google Scholar 

  383. Shon KJ, Kim Y, Colnago LA, Opella SJ (1991) NMR studies of the structure and dynamics of membrane-bound bacteriophage Pfl coat protein. Science 252:1303–1304

    Article  CAS  Google Scholar 

  384. Henry GD, Sykes BD (1994) Methods to study membrane protein structure in solution. Methods Enzymol 239:515–535

    Article  CAS  Google Scholar 

  385. Vinogradova O, Badola P, Czerski L, Sönnichsen FD, Sanders CR (1997) Escherichia coli diacylglycerol kinase: a case study in the application of solution NMR methods to an integral membrane protein. Biophys J 72:2688–2701

    Article  CAS  Google Scholar 

  386. Girvin ME, Fillingame RH (1995) Determination of local protein structure by spin-label difference 2D NMR: the region neighboring Asp61 of subunit-c of the F1F0 ATP synthase. Biochemistry 34:1635–1645

    Article  CAS  Google Scholar 

  387. White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    Article  CAS  Google Scholar 

  388. Lin TL, Chen SH, Gabriel NE, Roberts MF (1987) Small-angle neutron scattering techniques applied to the study of polydisperse rodlike diheptanoylphosphatidylcholine micelles. J Phys Chem 91:406–413

    Article  CAS  Google Scholar 

  389. le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  Google Scholar 

  390. Stafford RE, Fanni T, Dennis EA (1989) Interfacial properties and critical micelle concentration of lysophospholipids. Biochemistry 1989:5113–5120

    Article  Google Scholar 

  391. MacKenzie KR, Prestegard JH, Engelman DM (1996) Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon-carbon couplings and 13C chemical shifts. J Biomol NMR 7:256–260

    Article  CAS  Google Scholar 

  392. Bocharov EV, Mayzel ML, Volynsky PE, Mineev KS, Tkach EN, Ermolyuk YS, Schulga AA, Efremov RG, Arseniev AS (2010) Left-handed dimer of EphA2 transmembrane domain: helix packing diversity among receptor tyrosine kinases. Biophys J 98:881–889

    Article  CAS  Google Scholar 

  393. Mineev KS, Khabibullina NF, Lyukmanova EN, Dolgikh DA, Kirpichnikov MP, Arseniev AS (2011) Spatial structure and dimer-monomer equilibrium of the ErbB3 transmembrane domain in DPC micelles. Biochim Biophys Acta 1808:2081–2088

    Article  CAS  Google Scholar 

  394. Buck-Koehntopa BA, Mascionia A, Buffya JJ, Veglia G (2005) Structure, dynamics, and membrane topology of stannin: a mediator of neuronal cell apoptosis induced by trimethyltin chloride. J Mol Biol 354:652–665

    Article  CAS  Google Scholar 

  395. Franzin CM, Teriete P, Marassi FM (2007) Structural similarity of a membrane protein in micelles and membranes. J Am Chem Soc 129:8078–8079

    Article  CAS  Google Scholar 

  396. Wittlich M, Thiagarajan P, Koenig BW, Hartmann R, Willbold D (2010) NMR structure of the transmembrane and cytoplasmic domains of human CD4 in micelles. Biochim Biophys Acta 1798:122–127

    Article  CAS  Google Scholar 

  397. Zamoon J, Mascioni A, Thomas DD, Veglia G (2003) NMR solution structure and topological orientation of monomeric phospholamban in dodecylphosphocholine micelles. Biophys J 85:2589–2598

    Article  CAS  Google Scholar 

  398. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  CAS  Google Scholar 

  399. White SH (2004) The progress of membrane protein structure determination. Protein Sci 13:1948–1949

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie K. Goto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qureshi, T., Goto, N.K. (2011). Contemporary Methods in Structure Determination of Membrane Proteins by Solution NMR. In: Zhu, G. (eds) NMR of Proteins and Small Biomolecules. Topics in Current Chemistry, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_306

Download citation

Publish with us

Policies and ethics