Skip to main content

NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 335))

Abstract

This chapter addresses the limits of low-field NMR spectroscopy for chemical analysis and will answer the question of whether high-resolution NMR spectroscopy for chemical analysis of solutions can be achieved with magnetic fields much lower than 0.1 T without losing the chemical information which at high field is derived from the chemical shift and the indirect spin–spin or J-coupling. The focus is on two major issues. First, the thermal spin population differences given by the Boltzmann distribution are small at low field and so is the signal-to-noise-ratio when starting measurements from thermal equilibrium. Second, the possibility of identifying chemical groups is explored at low magnetic fields where the chemical shift can usually no longer be resolved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ALTADENA:

Adiabatic longitudinal transport after dissociation engenders net alignment

DNP:

Dynamic nuclear polarization

PASADENA:

Parahydrogen and synthesis allow dramatically enhanced nuclear alignment

PHIP:

Para-hydrogen induced polarization

SABRE:

Signal amplification by reversible exchange

SEOP:

Spin exchange optical pumping

SPINOE:

Spin polarization induced nuclear Overhauser effect

SQUID:

Superconducting quantum interference device

References

  1. Perlo J, Demas V, Casanova F, Meriles C, Reimer J, Pines A, Blümich B (2005) High-resolution NMR spectroscopy with a portable single-sided sensor. Science 308:1279

    Article  CAS  Google Scholar 

  2. Perlo J, Casanova F, Blümich B (2007) Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science 315:1110–1112

    Article  CAS  Google Scholar 

  3. McDermott R, Trabesinger AH, Mück M, Hahn EL, Pines A, Clarke J (2002) Liquid-state NMR and scalar couplings in microtesla magnetic fields. Science 295:2247–2249

    Article  CAS  Google Scholar 

  4. Appelt S, Häsing FW, Kühn H, Perlo J, Blümich B (2005) Mobile high resolution xenon nuclear magnetic resonance spectroscopy in the earth’s magnetic field. Phys Rev Lett 94:197602

    Article  Google Scholar 

  5. Appelt S, Kühn H, Häsing FW, Blümich B (2006) Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth’s magnetic field. Nat Phys 2:105–109

    Article  CAS  Google Scholar 

  6. Robinson JN, Coy A, Dykstra R, Eccles CD, Hunter MW, Callaghan PT (2006) Two-dimensional NMR spectroscopy in Earth’s magnetic field. J Magn Reson 182:343–347

    Article  CAS  Google Scholar 

  7. Savukov IM, Romalis MV (2005) NMR detection with an atomic magnetometer. Phys Rev Lett 94:123001

    Article  CAS  Google Scholar 

  8. Ledbetter MP, Crawford CW, Pines A, Wemmer DE, Knappe S, Kitching J, Budker D (2009) Optical detection of NMR J-spectra at zero magnetic field. J Magn Reson 199:25–29

    Article  CAS  Google Scholar 

  9. Packard M, Varian R (1954) Free nuclear induction in the Earth’s magnetic field. Phys Rev 93:941

    CAS  Google Scholar 

  10. Benoit H, Hennequin J, Ottavi H (1962) Les applications spectroscopiques de la méthode de prépolarisation en R.M.N. (champs faibles). Chim Anal 44:471–477

    CAS  Google Scholar 

  11. Béné GJ (1980) Nuclear magnetism of liquid systems in the Earth field range. Phys Rep 58:213–267

    Article  Google Scholar 

  12. Matlachov AN, Volegov PL, Espy MA, George JS, Kraus RH Jr (2004) SQUID detected NMR in microtesla magnetic fields. J Magn Reson 170:1–7

    Article  CAS  Google Scholar 

  13. Burghoff M, Hartwig S, Trahms L, Bernarding J (2005) Nuclear magnetic resonance in the nano tesla range. Appl Phys Lett 87:054103

    Article  Google Scholar 

  14. Savukov IM, Lee S-K, Romalis M (2006) Optical detection of liquid-state NMR. Nature 442:1021–1024

    Article  CAS  Google Scholar 

  15. Budker D, Romalis M (2007) Optical magnetometry. Nature Phys 3:227–234

    Article  CAS  Google Scholar 

  16. Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651

    Article  CAS  Google Scholar 

  17. Maze JR, Stanwix PL, Hodges JS, Hong S, Zaylor JM, Cappellaro P, Jiang L, Gurudev Dutt MV, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647

    Article  CAS  Google Scholar 

  18. Kleinberg RL (1996) Well logging. In: Encyclopedia of NMR. Wiley-Liss, New York, pp 4960–4969

    Google Scholar 

  19. Coates GR, Xiao L, Prammer MG (1999) NMR logging – principles and applications. Halliburton Energy Services, Houston

    Google Scholar 

  20. Kimmich R, Anoardo E (2004) Field-cycling NMR relaxometry. Prog Nucl Magn Reson Spectrosc 44:257–320

    Article  CAS  Google Scholar 

  21. Noack F (1986) NMR field-cycling spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 18:171–276

    Article  CAS  Google Scholar 

  22. Callaghan PT, Coy A, Dykstra R, Eccles CD, Halse ME, Hunter MW, Mercier OR, Robinson JN (2007) New Zealand developments in Earth’s field NMR. Appl Magn Reson 32:63–74

    Article  Google Scholar 

  23. Thayer AM, Pines A (1987) Zero-field NMR. Acc Chem Res 20:47–53

    Article  CAS  Google Scholar 

  24. Ivanov D, Redfield AG (2004) Field-cycling method with central transition readout for pure quadrupole resonance detection in dilute systems. J Magn Reson 166:19–27

    Article  CAS  Google Scholar 

  25. Abragam A, Goldman M (1978) Principles of dynamic nuclear polarisation. Rep Prog Phys 41:395–467

    Article  CAS  Google Scholar 

  26. Halse ME, Callaghan PT (2008) A dynamic nuclear polarization strategy for multi-dimensional Earth’s field NMR. J Magn Reson 195:162–168

    Article  CAS  Google Scholar 

  27. Lingwood MD, Ivanov IA, Cote AR, Han S (2010) Heisenberg spin exchange effect of nitroxide radicals on Overhauser dynamic nuclear polarization in the low field limit at 1.5 mT. J Magn Reson 204:56–63

    Article  CAS  Google Scholar 

  28. Happer W (1972) Optical pumping. Rev Mod Phys 44:169–249

    Article  CAS  Google Scholar 

  29. Appelt S, Baranga AB, Erickson CJ, Romalis MV, Young AR, Happer W (1998) Theory of spin-exchange optical pumping of 3He and 128Xe. Phys Rev A 58:1412–1439

    Article  CAS  Google Scholar 

  30. Navon G, Song YQ, Room T, Appelt S, Taylor RE, Pines A (1996) Enhancement of solution NMR and MRI with laser-polarized xenon. Science 271:1848–1851

    Article  CAS  Google Scholar 

  31. Appelt S, Häsing FW, Baer-Lang S, Shah NJ, Blümich B (2001) Proton magnetization enhancement of solvents with hyperpolarized xenon in very low magnetic fields. Chem Phys Lett 348:263–269

    Article  CAS  Google Scholar 

  32. Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645–2648

    Article  CAS  Google Scholar 

  33. Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315

    Article  Google Scholar 

  34. Hubler P, Giernoth R, Kummerle G, Bargon J (1999) Investigating the kinetics of homogeneous hydrogenation reactions using PHIP NMR spectroscopy. J Am Chem Soc 121:5311–5318

    Article  Google Scholar 

  35. Aime S, Canet D, Dastru W, Gobetto R, Reineri F, Viale A (2001) A novel application of p-H2: the reversible addition/elimination of H2 at a Ru3 cluster revealed by the enhanced NMR emission resonance from molecular hydrogen. J Phys Chem A 105:6305–6310

    Article  CAS  Google Scholar 

  36. Bouchard LS, Burt SR, Anwar MS, Kovtunov KV, Koptyug IV, Pines A (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science 319:442–445

    Article  CAS  Google Scholar 

  37. Kovtunov KV, Beck IE, Bukhtiyarov VI, Koptyug IV (2008) Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts. Angew Chem 120:1514–1517

    Article  Google Scholar 

  38. Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Khazal IG, Lopez-Serrano J, Williamson DC (2009) Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–1711

    Article  CAS  Google Scholar 

  39. Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, Green GGR, Lopez-Serrano J, Whitwood AC (2009) Spontaneous transfer of parahydrogen derived spin order to pyridine at low magnetic field. J Am Chem Soc 131:13362–13368

    Article  CAS  Google Scholar 

  40. Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109:5541–5542

    Article  CAS  Google Scholar 

  41. Gong Q, Gordji-Nejad A, Blümich B, Appelt S (2010) Trace analysis by low-field NMR: breaking the sensitivity limit. Anal Chem 82:7078–7082

    Article  CAS  Google Scholar 

  42. Appelt S, Glöggler S, Häsing FW, Sieling U, Gordji-Nejad A, Blümich B (2010) NMR spectroscopy in the milli-tesla regime: measurement of 1H chemical-shift differences below the line width. Chem Phys Lett 485:217–220

    Article  CAS  Google Scholar 

  43. Glöggler S, Blümich B, Appelt S (2011) Real-time detection of polymerization reactions with hyperpolarized xenon at low magnetic fields. AIP Conf Proc 1330:101–104

    Google Scholar 

  44. Crabtree RH, Lavin M, Bonneviot L (1986) Some molecular hydrogen complexes of iridium. J Am Chem Soc 108:4032–4037

    Article  CAS  Google Scholar 

  45. Appelt S, Häsing FW, Sieling U, Gordji-Nejad A, Glöggler S, Blümich B (2010) Paths from weak to strong coupling in NMR. Phys Rev A 81:023420

    Article  Google Scholar 

  46. Appelt S, Häsing FW, Kühn H, Sieling U, Blümich B (2007) Analysis of molecular structures by homo- and hetero-nuclear J-coupled NMR in the ultra-low field. Chem Phys Lett 440:308–313

    Article  CAS  Google Scholar 

  47. Appelt S, Häsing FW, Kühn H, Sieling U, Blümich B (2007) Phenomena in J-coupled nuclear magnetic resonance spectroscopy in low magnetic fields. Phys Rev A 76:023420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Blümich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glöggler, S., Blümich, B., Appelt, S. (2011). NMR Spectroscopy for Chemical Analysis at Low Magnetic Fields. In: Heise, H., Matthews, S. (eds) Modern NMR Methodology. Topics in Current Chemistry, vol 335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_304

Download citation

Publish with us

Policies and ethics