Skip to main content

Chemical Applications of Fluorous Reagents and Scavengers

  • Chapter
  • First Online:
Fluorous Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 308))

Abstract

Fluorous modified reagents and scavengers have been widely used in the synthesis of small molecules and small molecule libraries. This chapter highlights some of those applications based on type of transformation and reagent or scavenger.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curran DP (2000) Fluorous techniques for the synthesis of organic molecules: a unified strategy for reaction and separation. In: Stoddard F, Reinhoudt D, Shibasaki M (eds) Stimulating concepts in chemistry. Wiley-VCH, New York

    Google Scholar 

  2. Curran DP (2001) Fluorous reverse phase silica gel. A new tool for preparative separations in synthetic organic and organofluorine chemistry. Synlett:1488–1496

    Google Scholar 

  3. Curran DP (2006) Synthetic applications of fluorous solid-phase extraction (F-SPE). Tetrahedron 62:11837–11865

    Article  Google Scholar 

  4. Palomo C, Aizpurua JM, Loinaz I, Fernandez-Berridi MJ, Irusta L (2001) Scavenging of fluorinated N,N’-dialkylureas by hydrogen binding: a novel separation method for fluorous synthesis. Org Lett 3:2361–2364

    Article  CAS  Google Scholar 

  5. Del Pozo C, Keller AI, Nagashima T, Curran DP (2007) Amide bond formation with a new fluorous carbodiimide: separation by reverse fluorous solid-phase extraction. Org Lett 9:4167

    Article  Google Scholar 

  6. Markowicz MW, Dembinski R (2004) Fluorous coupling reagents: application of 2-chloro-4,6-bis[(heptadecafluorononyl)oxy]-1,3,5-triazine in peptide synthesis. Synthesis:80–86

    Google Scholar 

  7. Zhang W, Lu Y, Nagashima T (2005) Plate-to-plate fluorous solid-phase extraction for solution-phase parallel synthesis. J Combi Chem 7:893–897

    Article  CAS  Google Scholar 

  8. Matsugi M, Hasegawa M, Sadachika D, Okamoto S, Tomioka M, Ikeya Y, Masuyama A, Mori Y (2007) Preparation and condensation reactions of a new light-fluorous Mukaiyama reagent: reliable purification with fluorous solid phase extraction for esters and amides. Tetrahedron Lett 48:4147–4150

    Article  CAS  Google Scholar 

  9. Matsugi M, Suganuma M, Yoshida S, Hasebe S, Kunda Y, Hagihara K, Oka S (2008) An alternative and facile purification procedure of amidation and esterification reactions using a medium fluorous Mukaiyama reagent. Tetrahedron Lett 49:6573–6574

    Article  CAS  Google Scholar 

  10. Matsugi M, Nakamura S, Kunda Y, Sugiyama Y, Shioiri T (2009) Pronounced rate enhancements in condensation reactions attributed to the fluorous tag in modified Mukaiyama reagents. Tetrahedron Lett 51:133–135

    Article  Google Scholar 

  11. Otera J (2004) Toward ideal (trans)esterification by use of fluorous distannoxane catalysts. Acc Chem Res 37:288–296

    Article  CAS  Google Scholar 

  12. Xiang J, Toyoshima S, Orita A, Otera J (2001) A practical and green chemical process: fluoroalkyldistannoxane-catalyzed biphasic transesterification. Angew Chem Int Ed 40:3670–3672

    Article  CAS  Google Scholar 

  13. Orita J, Man-e S, Otera J (2006) Fluorophilicity switch by solvation. J Am Chem Soc 128:4182–4183

    Article  CAS  Google Scholar 

  14. Bucher B, Curran DP (2000) Selective sulfonylation of 1,2-diols and derivatives catalyzed by a recoverable fluorous tin oxide. Tetrahedron Lett:9617–9621

    Google Scholar 

  15. Beeler AB, Acquilano DE, Su Q, Yan F, Roth BL, Panek JS, Porco JA (2005) Synthesis of a library of complex macrodiolides employing cyclodimerization of hydroxy esters. J Comb Chem 7:673–681

    Article  CAS  Google Scholar 

  16. Kesavan S, Su Q, Shao J, Porco JA, Panek JS (2005) Enantioselective synthesis of linear polypropionate arrays using anthracene-tagged organosilanes. Org Lett 7:4435–4438

    Article  CAS  Google Scholar 

  17. Mikami K, Mikami Y, Matsuzawa H, Matsumoto Y, Nishikido J, Yamamoto F, Nakajima H (2002) Lanthanide catalysts with tris(perfluorooctanesulfonyl)methide and bis(perfluorooctanesulfonyl)amide ponytails: recyclable Lewis acid catalysts in fluorous phases or as solids. Tetrahedron 58:4015–4021

    Article  CAS  Google Scholar 

  18. Hao X, Yoshida A, Nishikido J (2004) Recyclable and selective Lewis acid catalysts for transesterification and direct esterification in a fluorous biphase system: tin(IV) and hafnium(IV) bis(perfluorooctanesulfonyl)amide complexes. Tetrahedron Lett 45:781–785

    Article  CAS  Google Scholar 

  19. Yoshida A, Hao X, Nishikido J (2003) Development of the continuous-flow reaction system based on the Lewis acid-catalysed reactions in a fluorous biphasic system. Green Chem 5:554–557

    Article  CAS  Google Scholar 

  20. For a review see Cai C, Yi W-B, Zhang W, Shen M-G, Hong M, Zeng L-Y (2009) Fluorous Lewis acids and phase transfer catalysts. Mol Divers 14:209–239

    Google Scholar 

  21. Hartwig JF (1998) Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew Chem Int Ed 37:2046–2067

    Article  CAS  Google Scholar 

  22. Hartwig JF (2000) Palladium-catalyzed amination of aryl halides and sulfonates. In: Ricci A (ed) Modern amination methods. Wiley-VCH, Weinheim, pp 195–262

    Chapter  Google Scholar 

  23. Cioffi CL, Berlin ML, Herr RJ (2004) Convenient palladium-catalyzed preparation of primary anilines using a fluorous benzophenone imine reagent. Synlett:841–845

    Google Scholar 

  24. Trabanco AA, Vega JA, Fernandez MA (2007) Fluorous-tagged carbamates for the pd-catalyzed amination of aryl halides. J Org Chem 72:8146–8148

    Article  CAS  Google Scholar 

  25. Dandapani S, Curran DP (2004) Separation-friendly mitsunobu reactions: a microcosm of recent developments in separation strategies. Chem Eur J 10:3130–3138

    Article  CAS  Google Scholar 

  26. Dembinski R (2004) Recent advances in the Mitsunobu reaction: modified reagents and the quest for chromatography-free separation. Eur J Org Chem:2763–2772

    Google Scholar 

  27. Dandapani S, Curran DP (2002) Fluorous Mitsunobu reagents and reactions. Tetrahedron 58:3855–3864

    Article  CAS  Google Scholar 

  28. Dandapani S, Curran DP (2004) Second generation fluorous dead reagents have expanded scope in the mitsunobu reaction and retain convenient separation features. J Org Chem 69:8751–8757

    Article  CAS  Google Scholar 

  29. Jogireddy R, Dakas P-Y, Valot G, Barluenga S, Winssinger N (2009) Synthesis of a resorcylic acid lactone (RAL) library using fluorous-mixture synthesis and profile of its selectivity against a panel of kinases. Chem-Eur J 15:11498–11506

    Article  CAS  Google Scholar 

  30. Chu Q, Henry C, Curran DP (2008) Second-generation tags for fluorous chemistry exemplified with a new fluorous Mitsunobu reagent. Org Lett 10:2453–2456

    Article  CAS  Google Scholar 

  31. Kiss LE, Kovesdi I, Rábai J (2001) An improved design of fluorophilic molecules: prediction of the ln P fluorous partition coefficient, fluorophilicity, using 3D QSAR descriptors and neural networks. J Fluorine Chem 108:95–109

    Article  CAS  Google Scholar 

  32. Curran DP, Bajpai R, Sanger E (2006) Purification of fluorous Mitsunobu reactions by liquid-liquid extraction. Adv Synth Catal 348:1621–1624

    Article  CAS  Google Scholar 

  33. Yu MS, Curran DP, Nagashima T (2005) Increasing fluorous partition coefficients by solvent tuning. Org Lett 7:3677–3680

    Article  CAS  Google Scholar 

  34. Chu Q, Yu MS, Curran DP (2007) New fluorous/organic biphasic systems achieved by solvent tuning. Tetrahedron 63:9890–9895

    Article  CAS  Google Scholar 

  35. Kuivila HG (1968) Organotin hydrides and organic free radicals. Acc Chem Res 1:299

    Article  CAS  Google Scholar 

  36. Neumann WP (1987) Tri-n-butyltin hydride as reagent in organic synthesis. Synthesis:665

    Google Scholar 

  37. Curran DP, Hadida S (1996) Tris(2-(perfluorohexyl)ethyl)tin hydride: a new fluorous reagent for use in traditional organic synthesis and liquid phase combinatorial synthesis. J Am Chem Soc 118:2531–2532

    Article  CAS  Google Scholar 

  38. Hadida S, Super MS, Beckman EJ, Curran DP (1997) Radical reactions with alkyl and fluoroalkyl (fluorous) tin hydride reagents in supercritical CO2. J Amer Chem Soc 119:7406–7407

    Article  CAS  Google Scholar 

  39. Curran DP, Hadida S, Kim SY, Luo ZY (1999) Fluorous tin hydrides: a new family of reagents for use and reuse in radical reactions. J Am Chem Soc 121:6607–6615

    Article  CAS  Google Scholar 

  40. Corey EJ, Bakshi RK, Shibata S (1987) Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J Am Chem Soc 109:5551–5553

    Article  CAS  Google Scholar 

  41. Corey EJ, Bakshi RK, Shibata S, Chen CP, Singh VK (1987) A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J Am Chem Soc 109:7925–7926

    Article  CAS  Google Scholar 

  42. Franot C, Stone GB, Engeli P, Spöndlin C, Waldvogel E (1995) A polymer-bound oxazaborolidine catalyst: enantioselective borane reductions of ketones. Tetrahedron-Asymmetry 6:2755–2766

    Article  CAS  Google Scholar 

  43. Price MD, Sui JK, Kurth MJ, Schore NE (2002) Oxazaborolidines as functional monomers: ketone reduction using polymer-supported Corey, Bakshi, and Shibata catalysts. J Org Chem 67:8086–8089

    Article  CAS  Google Scholar 

  44. Kell RJ, Hodge P, Snedden P, Watson D (2003) Towards more chemically robust polymer-supported chiral catalysts: α, α-diphenyl-L-prolinol based catalysts for the reduction of prochiral ketones with borane. Org Biomol Chem 1:3238–3243

    Article  CAS  Google Scholar 

  45. Degni S, Wilén C-E, Rosling A (2004) Highly catalytic enantioselective reduction of aromatic ketones using chiral polymer-supported Corey, Bakshi, and Shibata catalysts. Tetrahedron-Asymmetry 15:1495–1499

    Article  CAS  Google Scholar 

  46. Schunicht C, Biffis A, Wullf G (2000) Microgel-supported oxazaborolidines: novel catalysts for enantioselective reductions. Tetrahedron 56:1693–1699

    Article  CAS  Google Scholar 

  47. Dalicsek Z, Pollreisz F, Gómóry A, Soós T (2005) Recoverable fluorous CBS methodology for asymmetric reduction of ketones. Org Lett 7:3243–3246

    Article  CAS  Google Scholar 

  48. Chu Q, Yu MS, Curran DP (2008) CBS reductions with a fluorous prolinol immobilized in a hydrofluoroether solvent. Org Lett 10:749–752

    Article  CAS  Google Scholar 

  49. Goushi S, Funabiki K, Ohta M, Hatano K, Matsui M (2007) Novel fluorous prolinol as a pre-catalyst for catalytic asymmetric borane reduction of various ketones. Tetrahedron 63:4061–4066

    Article  CAS  Google Scholar 

  50. Rocaboy C, Gladysz JA (2003) Convenient syntheses of fluorous aryl iodides and hypervalent iodine compounds: ArI(L)n reagents that are recoverable by simple liquid/liquid biphase workups, and applications in oxidations of hydroquinones. Chem Eur J 9:88–95

    Article  CAS  Google Scholar 

  51. Lindsley CW, Zhao Z (2004) Fluorous scavengers. In: Gladys JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Wiley-VCH, New York, pp 236–246

    Google Scholar 

  52. Tesevic V, Gladysz JA (2005) An easily accessed class of recyclable hypervalent iodide reagents for functional group oxidations: bis(trifluoroacetate) adducts of fluorous alkyl iodides, CF3(CF2)n-1I(OCOCF3)2. Green Chem 7:833–836

    Article  CAS  Google Scholar 

  53. Tesevic V, Gladysz JA (2006) Oxidations of secondary alcohols to ketones using easily recyclable bis(trifluoroacetate) adducts of fluorous alkyl iodides, CF3(CF2)n-1I(OCOCF3)2. J Org Chem 71:7433–7440

    Article  CAS  Google Scholar 

  54. Miura T, Nakashima K, Tada N, Itoh A (2010) An effective and catalytic oxidation using recyclable fluorous IBX. Chem Commun 47:1875–1877

    Article  Google Scholar 

  55. Betzemeier B, Lhermitte F, Knochel P, (1999) A selenium catalyzed epoxidation in perfluorinated solvents with hydrogen peroxide. Synlett 489–491

    Google Scholar 

  56. ten Brink G-J, Vis JM, Arends IWCE, Sheldon RA (2002) Selenium catalysed oxidations with aqueous hydrogen peroxide. Part 3: oxidation of carbonyl compounds under mono/bi/triphasic conditions. Tetrahedron 58:3977–3983

    Article  Google Scholar 

  57. Crich D, Zou Y (2004) Catalytic allylic oxidation with a recyclable, fluorous seleninic acid. Org Lett 6:775–777

    Article  CAS  Google Scholar 

  58. Crich D, Zou Y (2005) Catalytic oxidation adjacent to carbonyl groups and at benzylic positions with a fluorous seleninic acid in the presence of iodoxybenzene. J Org Chem 70:3309–3311

    Article  CAS  Google Scholar 

  59. Crich D, Neelamkavil S (2001) Fluorous Swern reaction. J Am Chem Soc 123:7449–7450

    Article  CAS  Google Scholar 

  60. Pozzi G, Cavazzini M, Hozczknecht O, Quici S, Shepperson I (2005) Synthesis and catalytic activity of a fluorous-tagged TEMPO radical. Tetrahedron Lett 45:4249–4251

    Article  Google Scholar 

  61. Holczknecht O, Pozzi G, Quici S (2006) Fluorous TEMPO: an efficient mediator for the aerobic oxidation of alcohols to carbonyl compounds. QSAR Comb Sci 25:736–741

    Article  CAS  Google Scholar 

  62. Holczknecht O, Cavazzini M, Quici S, Shepperson I, Pozzi G (2005) Selective oxidation of alcohols to carbonyl compounds mediated by fluorous-tagged TEMPO radicals. Adv Synth Catal 347:677–688

    Article  CAS  Google Scholar 

  63. Dobbs AP, Penny MJ, Jones P (2008) Novel light-fluorous TEMPO reagents and their application in oxidation reactions. Tetrahedron Lett 49:6955–6958

    Article  CAS  Google Scholar 

  64. Dobbs AP, Jones P, Penny MJ, Rigby SE (2009) Light-fluorous TEMPO: reagent, spin trap and stable free radical. Tetrahedron 65:5271–5277

    Article  CAS  Google Scholar 

  65. Gheorghe A, Cuevas-Yanez E, Horn J, Bannwarth W, Narsaiah B, Reiser O (2006) A facile strategy to a new fluorous-tagged, immobilized TEMPO catalyst using a click reaction, and its catalytic activity. Synlett 17:2767–2770

    Google Scholar 

  66. Gheorghe A, Chinnusamy T, Cuesvas-Yañez E, Hilgers P, Reiser O (2008) Combination of perfluoroalkyl and triazole moieties: a new recovery strategy for TEMPO. Org Lett 10:4171–4174

    Article  CAS  Google Scholar 

  67. Curran DP, Lou Z, Degenkolb P (1998) “Propylene spaced” allyl tin reagents: a new class of fluorous tin reagents for allylations under radical and metal-catalyzed conditions. Bioorg Med Chem Lett 8:2403–2408

    Article  CAS  Google Scholar 

  68. Curran DP, Hadida S, He M (1997) Thermal allylations of aldehydes with a fluorous allylstannane. Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel. J Org Chem 62:6714–6715

    Article  CAS  Google Scholar 

  69. Ryu I, Nigumo T, Minakata S, Komatsu M (1999) Radical carbonylations with fluorous allyltin reagents. Tetrahedron Lett 40:2367–2370

    Article  CAS  Google Scholar 

  70. Ryu I (2004) Radical carbonylations using fluorous tin reagents: convenient workup and facile recycle of the reagents. In: Gladys JA, Curran DP, Horváth IT (eds) Handbook of fluorous chemistry. Wiley-VCH, New York, pp 182–190

    Google Scholar 

  71. Ryu I, Niguma T, Minakata S, Komatsu M, Hadida S, Curran DP (1997) Hydroxymethylation of organic halides. Evaluation of a catalytic system involving a fluorous tin hydride reagent for radical carbonylation. Tetrahedron Lett 38:7883–7886

    Article  CAS  Google Scholar 

  72. Curran DP, Hadida S, Kim S-Y (1999) Tris(2-perfluorohexylethyl) tin azide: a new reagent for preparation of 5-substituted tetrazoles from nitriles with purification by fluorous organic liquid-liquid extraction. Tetrahedron 55:8997–9006

    Article  CAS  Google Scholar 

  73. Curran DP, Hoshino M (1996) Stille couplings with fluorous tin reactants: attractive features for preparative organic synthesis and liquid-phase combinatorial synthesis. J Org Chem 61:6480–6481

    Article  CAS  Google Scholar 

  74. Hoshino M, Degenkolb P, Curran DP (1997) Palladium-catalyzed Stille couplings with fluorous tin reactants. J Org Chem 62:8341–8349

    Article  CAS  Google Scholar 

  75. Osswald T, Schneider S, Wang S, Bannwarth W (2001) Stille couplings in supercritical CO2 catalyzed with perfluoro-tagged and un-tagged Pd complexes. Tetrahedron Lett 42:2965–2967

    Article  CAS  Google Scholar 

  76. Kaleta Z, Tárkányi G, Gömöry A, Kálmán F, Nagy T, Soós T (2006) Synthesis and application of a fluorous Lawesson’s reagent: convenient chromatography-free product purification. Org Lett 8:1093–1095

    Article  CAS  Google Scholar 

  77. Kaleta Z, Makowski BT, Soós T, Dembinski R (2006) Thionation using fluorous Lawesson's reagent. Org Lett 8:1625–1628

    Article  CAS  Google Scholar 

  78. Kobayashi S, Yoneda A, Fukuhara T, Hara S (2004) Selective synthesis of fluorinated carbohydrates using N, N-diethyl-α, α-difluoro-(m-methylbenzyl)amine. Tetrahedron Lett 45:1287–1289

    Article  CAS  Google Scholar 

  79. Kobayashi S, Yoneda A, Fukuhara T, Hara S (2004) Tetrahedron 60:6932–6930

    Google Scholar 

  80. Chen CH-T, Zhang W (2005) Fluorous reagents and scavengers versus solid-supported reagents and scavengers, a reaction rate and kinetic comparison. Mol Divers 9:353–359

    Article  CAS  Google Scholar 

  81. Linclau B, Sing AK, Curran DP (1999) Organic-fluorous phase switches: a fluorous amine scavenger for purification in solution phase parallel synthesis. J Org Chem 64:2835–2842

    Article  CAS  Google Scholar 

  82. Lindsley CW, Zhao Z, Leister WH (2002) Fluorous-tethered quenching reagents for solution phase parallel synthesis. Tetrahedron Lett 43:4225–4228

    Article  CAS  Google Scholar 

  83. Lindsley CW, Zhao Z, Leister WH, Strauss KA (2002) Fluorous-tethered amine bases for organic and parallel synthesis: scope and limitations. Tetrahedron Lett 43:6319–6323

    Article  CAS  Google Scholar 

  84. Zhang W, Curran DP, Chen CH-T (2002) Use of fluorous silica gel to separate fluorous thiol quenching derivatives in solution-phase parallel synthesis. Tetrahedron 58:3871–3875

    Article  CAS  Google Scholar 

  85. Zhang W, Chen CH-T, Nagashima T (2003) Fluorous electrophilic scavengers for solution-phase parallel synthesis. Tetrahedron Lett 44:2065–2068

    Article  CAS  Google Scholar 

  86. Zhang AS, Elmore CS, Egan MA, Mellilo DG, Dean DC (2005) Use of fluorous and solid-phase electrophiles as scavengers for excess amine in the preparation of sulfur-35 labelled radioligands. J Label Compd Radiopharm 48:203–208

    Article  CAS  Google Scholar 

  87. Lu Y, Zhang W (2006) Fluorous 2,4-dichloro-1,3,5-triazines (F-DCTs) as nucleophile scavengers. QSAR Comb Sci 8:728–731

    Article  Google Scholar 

  88. Baslé E, Jean M, Gouault N, Renault J, Uriac P (2007) Fluorous scavenger for parallel preparation of tertiary sulfonamides leading to secondary amines. Tetrahedron 48:8138–8140

    Article  Google Scholar 

  89. Werner S, Curran DP (2003) Fluorous dienophiles are powerful diene scavengers in Diels-Alder reactions. Org Lett 5:3293–3296

    Article  CAS  Google Scholar 

  90. Hicks JW, Harrington LE, Valliant JF (2011) Fluorous ligand capture (FLC): a chemoselective solution-phase strategy for isolating 99mTc-labelled compounds in high effective specific activity. Chem Commun. doi:10.1039/c1cc11079a

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin S. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, M.S. (2011). Chemical Applications of Fluorous Reagents and Scavengers. In: Horváth, I. (eds) Fluorous Chemistry. Topics in Current Chemistry, vol 308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_264

Download citation

Publish with us

Policies and ethics