Skip to main content

EPR in Protein Science

Intrinsically Disordered Proteins

  • Chapter
  • First Online:
Book cover EPR Spectroscopy

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 321))

Abstract

Abstract

Intrinsically disordered proteins (IDPs) form a unique protein category characterized by the absence of a well-defined structure and by remarkable conformational flexibility. Electron Paramagnetic Resonance (EPR) spectroscopy combined with site-directed spin labeling (SDSL) is amongst the most suitable methods to unravel their structure and dynamics. This review summarizes the tremendous methodological developments in the area of SDSL EPR and its applications in protein research. Recent results on the intrinsically disordered Parkinson’s disease protein α-synuclein illustrate that the method has gained increasing attention in IDP research. SDSL EPR has now reached a level where broad application in this rapidly advancing field is feasible.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbell WL, Altenbach C (1994) Investigation of structure and dynamics in membrane-proteins using site-directed spin-labeling. Curr Opin Struct Biol 4:566–573

    Article  CAS  Google Scholar 

  2. Hubbell WL, McHaourab HS, Altenbach C, Lietzow MA (1996) Watching proteins move using site-directed spin labeling. Structure 4:779–783

    Article  CAS  Google Scholar 

  3. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656

    Article  CAS  Google Scholar 

  4. Feix J, Klug C (1998) Site-directed spin labeling of membrane proteins and peptide-membrane interactions. In: Berliner LJ (ed) Biological magnetic resonance, vol 14. Plenum Press, New York

    Google Scholar 

  5. Likhtenshtein GI, Yamauchi J, Nakatsuji S, Smirnov AI, Tamura R (2008) Nitroxides. Wiley-VCH, Weinheim

    Book  Google Scholar 

  6. Berliner LJ, Reuben J (1989) Spin labeling – theory and application. In: Biological magnetic resonance, vol 8. Academic, New York

    Google Scholar 

  7. Potapov A, Yagi H, Huber T, Jergic S, Dixon NE, Otting G, Goldfarb D (2010) Nanometer-scale distance measurements in proteins using Gd3+ spin labeling. J Am Chem Soc 132:9040–9048

    Article  CAS  Google Scholar 

  8. Song Y, Meade TJ, Astashkin AV, Klein EL, Enemark JH, Raitsimring A (2011) Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers. J Magn Reson 210(1):59–68. doi:S1090-7807(11)00071-1 [pii] 10.1016/j.jmr.2011.02.010

    Article  CAS  Google Scholar 

  9. Axel FS (1976) Biophysics with nitroxyl radicals. Biophys Struct Mech 2:181–218

    Article  CAS  Google Scholar 

  10. Klug CS, Feix JB (2008) Methods and applications of site-directed spin labeling EPR spectroscopy. In: Terry A (ed) Biophysical tools for biologists: vol one in vitro techniques, vol 84. Methods in Cell Biology. Academic, New York

    Google Scholar 

  11. Braun P, Nägele B, Wittmann V, Drescher M (2011) Mechanism of multivalent carbohydrate-protein interactions studied by EPR spectroscopy. Angew Chem Int Ed, doi: 10.1002/anie.201104492

    Google Scholar 

  12. Junk MJN, Spiess HW, Hinderberger D (2010) The distribution of fatty acids reveals the functional structure of human serum albumin. Angew Chem Int Ed 49:8755–8759

    Article  CAS  Google Scholar 

  13. Hubbell WL, Cafiso DS, Altenbach C (2000) Identifying conformational changes with site-directed spin labeling. Nat Struct Biol 7:735–739

    Article  CAS  Google Scholar 

  14. Langen R, Oh KJ, Cascio D, Hubbell WL (2000) Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39:8396–8405

    Article  CAS  Google Scholar 

  15. Ogawa S, McConnel HM (1967) Spin-label study of hemoglobin conformations in solution. Proc Natl Acad Sci USA 58:19–26

    Article  CAS  Google Scholar 

  16. Jahnke W, Rudisser S, Zurini M (2001) Spin label enhanced NMR screening. J Am Chem Soc 123:3149–3150

    Article  CAS  Google Scholar 

  17. Lawrence JJ, Berne L, Ouvrierbuffet JL, Piette LH (1980) Spin-label study of histone H1-DNA interaction – comparative properties of the central part of the molecule and the N-amino and C-amino tails. Eur J Biochem 107:263–269

    Article  CAS  Google Scholar 

  18. McHaourab HS, Lietzow MA, Hideg K, Hubbell WL (1996) Motion of spin-labeled side chains in T4 lysozyme, correlation with protein structure and dynamics. Biochemistry 35:7692–7704

    Article  CAS  Google Scholar 

  19. Alexander RS, Nair SK, Christianson DW (1991) Engineering the hydrophobic pocket of carbonic anhydrase-II. Biochemistry 30:11064–11072

    Article  CAS  Google Scholar 

  20. Becker CFW, Lausecker K, Balog M, Kalai T, Hideg K, Steinhoff HJ, Engelhard M (2005) Incorporation of spin-labelled amino acids into proteins. Magn Reson Chem 43:34–39

    Article  CAS  Google Scholar 

  21. Karim CB, Zhang Z, Thomas DD (2007) Synthesis of TOAC spin-labeled proteins and reconstitution in lipid membranes. Nat Protoc 2:42–49

    Article  CAS  Google Scholar 

  22. Toniolo C, Valente E, Formaggio F, Crisma M, Pilloni G, Corvaja C, Toffoletti A, Martinez GV, Hanson MP, Millhauser GL, George C, Flippen-Anderson JL (1995) Synthesis and conformational studies of peptides containing TOAC, a spin-labelled Cα, α-disubstituted glycine. J Pept Sci 1:45–57

    Article  CAS  Google Scholar 

  23. Nakaie CR, Goissis G, Schreier S, Paiva ACM (1981) pH-Dependence of electron-paramagnetic-res spectra of nitroxides containing ionizable groups. Braz J Med Biol Res 14:173–180

    CAS  Google Scholar 

  24. Klare JP, Steinhoff HJ (2009) Spin labeling EPR. Photosynth Res 102:377–390

    Article  CAS  Google Scholar 

  25. Bettio A, Gutewort V, Poppl A, Dinger MC, Zschornig O, Arnold K, Toniolo C, Beck-Sickinger AG (2002) Electron paramagnetic resonance backbone dynamics studies on spin-labelled neuropeptide Y analogues. J Pept Sci 8:671–682

    Article  CAS  Google Scholar 

  26. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  27. Blank A, Talmon Y, Shklyar M, Shtirberg L, Harneit W (2008) Direct measurement of diffusion in liquid phase by electron spin resonance. Chem Phys Lett 465:147–152

    Article  CAS  Google Scholar 

  28. Drescher M, Kaplan N, Dormann E (2006) Conduction-electron drift velocity measurement via electron spin resonance. Phys Rev Lett 96:037601

    Article  CAS  Google Scholar 

  29. Dalton L (1985) EPR and advanced EPR studies of biological systems. CRC Press, Boca Raton

    Google Scholar 

  30. Berliner LJ, Reuben J (1998) Spin labeling – the next millenium. In: Biological magnetic resonace, vol 14. Academic, New York

    Google Scholar 

  31. Budil DE, Earle KA, Freed JH (1993) Full determination of the rotational diffusion tensor by electron-paramagnetic resonance at 250 GHz. J Phys Chem 97:1294–1303

    Article  CAS  Google Scholar 

  32. Brustolon M (2008) What can be studied with electron paramagnetic resonance? In: Electron paramagnetic resonance. Wiley, Hoboken, New Jersey

    Google Scholar 

  33. Strancar J, Kavalenka A, Urbancic I, Ljubetic A, Hemminga MA (2010) SDSL-ESR-based protein structure characterization. Eur Biophys J Biophys Lett 39:499–511

    Article  CAS  Google Scholar 

  34. Zhang ZW, Fleissner MR, Tipikin DS, Liang ZC, Moscicki JK, Earle KA, Hubbell WL, Freed JH (2010) Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme. J Phys Chem B 114:5503–5521

    Article  CAS  Google Scholar 

  35. Liang ZC, Freed JH (1999) An assessment of the applicability of multifrequency ESR to study the complex dynamics of biomolecules. J Phys Chem B 103:6384–6396

    Article  CAS  Google Scholar 

  36. Hanson GR, Gates KE, Noble CJ, Griffin M, Mitchell A, Benson S (2004) XSophe-Sophe-XeprView (R). A computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra. J Inorg Biochem 98:903–916

    Article  CAS  Google Scholar 

  37. Bax A (1989) Two-dimensional NMR and protein-structure. Annu Rev Biochem 58:223–256

    Article  CAS  Google Scholar 

  38. Belle V, Fournel A, Woudstra M, Ranaldi S, Prieri F, Thome V, Currault J, Verger R, Guigliarelli B, Carriere F (2007) Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy. Biochemistry 46:2205–2214

    Article  CAS  Google Scholar 

  39. Lund J, Dalton H (1985) Further characterization of the FAD and FE2S2 redox centers of component-C, the NADH – acceptor reductase of the soluble methane monooxygenase of methylococcus-capsulatus (BATH). Europ J Biochem 147:291–296

    Article  CAS  Google Scholar 

  40. Isas JM, Langen R, Haigler HT, Hubbell WL (2002) Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study. Biochemistry 41:1464–1473

    Article  CAS  Google Scholar 

  41. Margittai M, Fasshauer D, Pabst S, Jahn R, Langen R (2001) Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J Biol Chem 276:13169–13177

    Article  CAS  Google Scholar 

  42. Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci USA 101:8331–8336

    Article  CAS  Google Scholar 

  43. Alexander N, Bortolus M, Al-Mestarihi A, McHaourab H, Meilerl J (2008) De novo high-resolution protein structure determination from sparse spin-labeling EPR data. Structure 16:181–195

    Article  CAS  Google Scholar 

  44. Gross A, Columbus L, Hideg K, Altenbach C, Hubbell WL (1999) Structure of the KcsA potassium channel from Streptomyces lividans: a site-directed spin labeling study of the second transmembrane segment. Biochemistry 38:10324–10335

    Article  CAS  Google Scholar 

  45. Domingo Köhler S, Weber A, Howard SP, Welte W, Drescher M (2010) The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria. Prot Sci 19:625–630

    Article  CAS  Google Scholar 

  46. Steinhoff HJ (1990) Residual motion of hemoglobin-bound spin labels and protein dynamics – viscosity dependence of the rotational correlation times. Eur Biophys J 18:57–62

    Article  CAS  Google Scholar 

  47. Constantine KL (2001) Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints. Biophys J 81:1275–1284

    Article  CAS  Google Scholar 

  48. Jeschke G, Polyhach Y (2007) Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 9:1895–1910

    Article  CAS  Google Scholar 

  49. Steinhoff HJ, Suess B (2003) Molecular mechanisms of gene regulation studied by site-directed spin labeling. Methods 29:188–195

    Article  CAS  Google Scholar 

  50. Rabenstein MD, Shin YK (1995) Determination of the distance between 2 spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92:8239–8243

    Article  CAS  Google Scholar 

  51. Jeschke G, Bender A, Paulsen H, Zimmermann H, Godt A (2004) Sensitivity enhancement in pulse EPR distance measurements. J Magn Reson 169:1–12

    Article  CAS  Google Scholar 

  52. Godt A, Schulte M, Zimmermann H, Jeschke G (2006) How flexible are poly(para-phenyleneethynylene)s? Angew Chem Int Ed 45:7560–7564

    Article  CAS  Google Scholar 

  53. Borbat PP, Davis JH, Butcher SE, Freed JH (2004) Measurement of large distances in biomolecules using double-quantum filtered refocused electron spin-echoes. J Am Chem Soc 126:7746–7747

    Article  CAS  Google Scholar 

  54. Berliner LJ, Eaton SS, Eaton GR (2002) Distance measurements in biological systems by EPR. In: Biological magnetic resonance, vol 19. Academic, New York

    Google Scholar 

  55. Jeschke G, Koch A, Jonas U, Godt A (2002) Direct conversion of EPR dipolar time evolution data to distance distributions. J Magn Reson 155:72–82

    Article  CAS  Google Scholar 

  56. Bowman MK, Maryasov AG, Kim N, DeRose VJ (2004) Visualization of distance distribution from pulsed double electron-electron resonance data. Appl Magn Reson 26:23–39

    Article  CAS  Google Scholar 

  57. Jeschke G, Panek G, Godt A, Bender A, Paulsen H (2004) Data analysis procedures for pulse ELDOR measurements of broad distance distributions. Appl Magn Reson 26:223–244

    Article  CAS  Google Scholar 

  58. Milov AD, Tsvetkov YD, Formaggio F, Oancea S, Toniolo C, Raap J (2004) Solvent effect on the distance distribution between spin labels in aggregated spin labeled trichogin GA IV dimer peptides as studied by pulsed electron-electron double resonance. Phys Chem Chem Phys 6:3596–3603

    Article  CAS  Google Scholar 

  59. Chiang YW, Borbat PP, Freed JH (2005) The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson 172:279–295

    Article  CAS  Google Scholar 

  60. Chiang YW, Borbat PP, Freed JH (2005) Maximum entropy: a complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR. J Magn Reson 177:184–196

    Article  CAS  Google Scholar 

  61. Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006 – a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498

    Article  CAS  Google Scholar 

  62. Zhou Z, DeSensi SC, Stein RA, Brandon S, Dixit M, McArdle EJ, Warren EM, Kroh HK, Song LK, Cobb CE, Hustedt EJ, Beth AH (2005) Solution structure of the cytoplasmic domain of erythrocyte membrane band 3 determined by site-directed spin labeling. Biochemistry 44:15115–15128

    Article  CAS  Google Scholar 

  63. Nakamura M, Ueki S, Hara H, Arata T (2005) Calcium structural transition of human cardiac troponin C in reconstituted muscle fibres as studied by site-directed spin labelling. J Mol Biol 348:127–137

    Article  CAS  Google Scholar 

  64. Fajer PG (2005) Site directed spin labelling and pulsed dipolar electron paramagnetic resonance (double electron-electron resonance) of force activation in muscle. J Phys Condens Mat 17:S1459–S1469

    Article  CAS  Google Scholar 

  65. Jeschke G, Abbott RJM, Lea SM, Timmel CR, Banham JE (2006) The characterization of weak protein-protein interactions: evidence from DEER for the trimerization of a von Willebrand factor A domain in solution. Angew Chem Int Ed 45:1058–1061

    Article  CAS  Google Scholar 

  66. Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. ChemPhysChem 3:927–932

    Article  CAS  Google Scholar 

  67. Jeschke G, Spiess HW (2006) Distance measurements in solid-state NMR and EPR spectroscopy. In: Dolinšek J, Vilfan M, Žumer S (eds) Novel NMR and EPR techniques, vol 684. Lecture Notes in Physics, Springer, Berlin/Heidelberg

    Google Scholar 

  68. Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Refolding of the integral membrane protein light-harvesting complex II monitored by pulse EPR. Proc Natl Acad Sci USA 106:18485–18490

    Article  CAS  Google Scholar 

  69. Qu KB, Vaughn JL, Sienkiewicz A, Scholes CP, Fetrow JS (1997) Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c.1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Biochemistry 36:2884–2897

    Article  CAS  Google Scholar 

  70. Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340

    Article  CAS  Google Scholar 

  71. Martin RE, Pannier M, Diederich F, Gramlich V, Hubrich M, Spiess HW (1998) Determination of end-to-end distances in a series of TEMPO diradicals of up to 2.8 nm length with a new four-pulse double electron electron resonance experiment. Angew Chem Int Ed 37:2834–2837

    CAS  Google Scholar 

  72. Persson M, Harbridge JR, Hammarstrom P, Mitri R, Martensson LG, Carlsson U, Eaton GR, Eaton SS (2001) Comparison of electron paramagnetic resonance methods to determine distances between spin labels on human carbonic anhydrase II. Biophys J 80:2886–2897

    Article  CAS  Google Scholar 

  73. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJJ, Rodgers CT, Jeschke G, Timmel CR (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191:202–218

    Article  CAS  Google Scholar 

  74. Jeschke G (2002) Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromol Rapid Commun 23(4):227–246

    Article  CAS  Google Scholar 

  75. Riplinger C, Kao JPY, Rosen GM, Kathirvelu V, Eaton GR, Eaton SS, Kutateladze A, Neese F (2009) Interaction of radical pairs through-bond and through-space: scope and limitations of the point-dipole approximation in electron paramagnetic resonance spectroscopy. J Am Chem Soc 131(29):10092–10106

    Article  CAS  Google Scholar 

  76. Margittai M, Langen R (2004) Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci USA 101:10278–10283

    Article  CAS  Google Scholar 

  77. Margittai M, Langen R (2006) Side chain-dependent stacking modulates tau filament structure. J Biol Chem 281:37820–37827

    Article  CAS  Google Scholar 

  78. Molin YN, Salikhov KM, Zamaraev KI (1980) Spin exchange. Springer, Berlin

    Book  Google Scholar 

  79. Altenbach C, Oh KJ, Trabanino RJ, Hideg K, Hubbell WL (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40:15471–15482

    Article  CAS  Google Scholar 

  80. Scarpelli F, Drescher M, Rutters-Meijneke T, Holt A, Rijkers DTS, Killian JA, Huber M (2009) Aggregation of transmembrane peptides studied by spin-label EPR. J Phys Chem B 113:12257–12264

    Article  CAS  Google Scholar 

  81. Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys J 73(6):3287–3298

    Article  CAS  Google Scholar 

  82. Schweiger A, Jeschke G (2005) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford, reprinted 2005 edn

    Google Scholar 

  83. Milov AD, Ponomarev AB, Tsvetkov YD (1984) Electron electron double-resonance in electron-spin echo – model biradical systems and the sensitized photolysis of decalin. Chem Phys Lett 110(1):67–72

    Article  CAS  Google Scholar 

  84. Milov AD, Salikohov KM, Shirov MD (1981) Application of endor in electron-spin echo for paramagnetic center space distribution in solids. Fiz Tverd Tela 23(4):975–982

    CAS  Google Scholar 

  85. Jeschke G (2011) DeerAnalysis2011 user manual. http://wwweprethzch/software/DeerAnalysis_2011_manual.pdf. Accessed 7 Apr 2011

  86. Richard W, Bowman A, Sozudogru E, El-Mkami H, Owen-Hughes T, Norman DG (2010) EPR distance measurements in deuterated proteins. J Magn Reson 207:164–167

    Article  CAS  Google Scholar 

  87. Zou P, Mchaourab HS (2010) Increased sensitivity and extended range of distance measurements in spin-labeled membrane proteins: Q-band double electron-electron resonance and nanoscale bilayers. Biophys J 98(6):L18–L20. doi:DOI 10.1016/j.bpj.2009.12.4193

    Article  CAS  Google Scholar 

  88. Höfer P, Heilig R, Schmalbein D (2003) The superQ-FT accessory for pulsed EPR, ENDOR and ELDOR at 34 GHz. Bruker SpinReport 152(153):37–43

    Google Scholar 

  89. Larsen RG, Singel DJ (1993) Double electron-electron resonance spin-echo modulation – spectroscopic measurement of electron-spin pair separations in orientationally disordered solids. J Chem Phys 98:5134–5146

    Article  CAS  Google Scholar 

  90. Lovett JE, Bowen AM, Timmel CR, Jones MW, Dilworth JR, Caprotti D, Bell SG, Wong LL, Harmer J (2009) Structural information from orientationally selective DEER spectroscopy. Phys Chem Chem Phys 11:6840–6848

    Article  CAS  Google Scholar 

  91. Torok M, Milton S, Kayed R, Wu P, McIntire T, Glabe CG, Langen R (2002) Structural and dynamic features of Alzheimer’s A beta peptide in amyloid fibrils studied by site-directed spin labeling. J Biol Chem 277:40810–40815

    Article  CAS  Google Scholar 

  92. Jeschke G, Sajid M, Schulte M, Godt A (2009) Three-spin correlations in double electron-electron resonance. Phys Chem Chem Phys 11:6580–6591

    Article  CAS  Google Scholar 

  93. Hilger D, Jung H, Padan E, Wegener C, Vogel KP, Steinhoff HJ, Jeschke G (2005) Assessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H + antiporter of E-coli. Biophys J 89:1328–1338

    Article  CAS  Google Scholar 

  94. Upadhyay AK, Borbat PP, Wang J, Freed JH, Edmondson DE (2008) Determination of the oligomeric states of human and rat monoamine oxidases in the outer mitochondrial membrane and octyl beta-D-glucopyranoside micelles using pulsed dipolar electron spin resonance spectroscopy. Biochemistry 47:1554–1566

    Article  CAS  Google Scholar 

  95. Bode BE, Margraf D, Plackmeyer J, Durner G, Prisner TF, Schiemann O (2007) Counting the monomers in nanometer-sized oligomers by pulsed electron – electron double resonance. J Am Chem Soc 129:6736–6745

    Article  CAS  Google Scholar 

  96. Jeschke G, Schlick S (2006) Spatial distribution of stabilizer-derived nitroxide radicals during thermal degradation of poly(acrylonitrile-butadiene-styrene) copolymers: a unified picture from pulsed ELDOR and ESR imaging. Phys Chem Chem Phys 8:4095–4103

    Article  CAS  Google Scholar 

  97. Domingo Köhler S, Spitzbarth M, Diederichs K, Exner TE, Drescher M (2011) A short note on the analysis of distance measurements by electron paramagnetic resonance. J Magn Reson 208:167–170

    Article  CAS  Google Scholar 

  98. Pannier M, Schops M, Schadler V, Wiesner U, Jeschke G, Spiess HW (2001) Characterization of ionic clusters in different ionically functionalized diblock copolymers by CW EPR and four-pulse double electron-electron resonance. Macromolecules 34:5555–5560

    Article  CAS  Google Scholar 

  99. Drescher M, Veldhuis G, van Rooijen BD, Milikisyants S, Subramaniam V, Huber M (2008) Antiparallel arrangement of the helices of vesicle-bound alpha-synuclein. J Am Chem Soc 130:7796–7797

    Article  CAS  Google Scholar 

  100. Sajid M, Jeschke G, Wiebcke M, Godt A (2009) Conformationally unambiguous spin labeling for distance measurements. Chemistry 15:12960–12962

    Article  CAS  Google Scholar 

  101. Borbat PP, McHaourab HS, Freed JH (2002) Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J Am Chem Soc 124:5304–5314

    Article  CAS  Google Scholar 

  102. Sale K, Sar C, Sharp KA, Hideg K, Fajer PG (2002) Structural determination of spin label immobilization and orientation: a Monte Carlo minimization approach. J Magn Reson 156:104–112

    Article  CAS  Google Scholar 

  103. Fajer P, Likai S, Liu YS, Perozo E, Budil D, Sale K (2004) Molecular modeling tools for dipolar EPR. Biophys J 86:191A

    Article  Google Scholar 

  104. Polyhach Y, Bordignon E, Jeschke G (2011) Rotamer libraries of spin labelled cysteines for protein studies. Phys Chem Chem Phys 13(6):2356–2366. doi:Doi 10.1039/C0cp01865a

    Article  CAS  Google Scholar 

  105. Polyhach Y, Jeschke G (2010) Prediction of favourable sites for spin labelling of proteins. Spectroscopy 24:651–659

    CAS  Google Scholar 

  106. Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63:243–290

    Article  CAS  Google Scholar 

  107. Altenbach C, Froncisz W, Hyde JS, Hubbell WL (1989) Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron-paramagnetic resonance. Biophys J 56:1183–1191

    Article  CAS  Google Scholar 

  108. Altenbach C, Flitsch SL, Khorana HG, Hubbell WL (1989) Structural studies on transmembrane proteins 2 spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28:7806–7812

    Article  CAS  Google Scholar 

  109. Percival PW, Hyde JS (1975) Pulsed EPR spectrometer 2. Rev Sci Instrum 46:1522–1529

    Article  CAS  Google Scholar 

  110. Yin JJ, Pasenkiewiczgierula M, Hyde JS (1987) Lateral diffusion of lipids in membranes by pulse saturation recovery electron-spin-resonance. Proc Natl Acad Sci USA 84:964–968

    Article  CAS  Google Scholar 

  111. Lacapere JJ, Pebay-Peyroula E, Neumann JM, Etchebest C (2007) Determining membrane protein structures: still a challenge! Trends Biochem Sci 32:259–270

    Article  CAS  Google Scholar 

  112. Torres J, Stevens TJ, Samso M (2003) Membrane proteins: the ‘Wild West’ of structural biology. Trends Biochem Sci 28:174

    Article  CAS  Google Scholar 

  113. Torres J, Stevens TJ, Samso M (2003) Membrane proteins: the ‘Wild West’ of structural biology. Trends Biochem Sci 28:137–144

    Article  CAS  Google Scholar 

  114. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  Google Scholar 

  115. Timsit Y, Allemand F, Chiaruttini C, Springer M (2006) Coexistence of two protein folding states in the crystal structure of ribosomal protein L20. EMBO Rep 7:1013–1018

    Article  CAS  Google Scholar 

  116. Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    Article  CAS  Google Scholar 

  117. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    Article  CAS  Google Scholar 

  118. Biswas R, Kühne H, Brudvig GW, Gopalan V (2001) Use of EPR spectroscopy to study macromulecular structure and function. Sci Prog 84:45–68

    Article  CAS  Google Scholar 

  119. Morin B, Bourhis JM, Belle V, Woudstra M, Carriere F, Guigliarelli B, Fournel A, Longhi S (2006) Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling electron paramagnetic resonance spectroscopy. J Phys Chem B 110:20596–20608

    Article  CAS  Google Scholar 

  120. Belle V, Rouger S, Costanzo S, Liquiere E, Strancar J, Guigliarelli B, Fournel A, Longhi S (2008) Mapping alpha-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy. Proteins 73:973–988

    Article  CAS  Google Scholar 

  121. Murakami K, Hara H, Masuda Y, Ohigashi H, Irie K (2007) Distance measurement between Tyr10 and Met35 in amyloid beta by site-directed spin-labeling ESR spectroscopy: implications for the stronger neurotoxicity of A beta 42 than A beta 40. Chembiochem 8:2308–2314

    Article  CAS  Google Scholar 

  122. Iurascu MI, Cozma C, Tomczyk N, Rontree J, Desor M, Drescher M, Przybylski M (2009) Structural characterization of β-amyloid oligomer-aggregates by ion mobility mass spectrometry and electron spin resonance spectroscopy. Anal Bioanal Chem 395:2509–2519

    Article  CAS  Google Scholar 

  123. Sepkhanova I, Drescher M, Meeuwenoord NJ, Limpens R, Koning RI, Filippov DV, Huber M (2009) Monitoring Alzheimer amyloid peptide aggregation by EPR. Appl Magn Reson 36:209–222

    Article  CAS  Google Scholar 

  124. Lundberg KM, Stenland CJ, Cohen FE, Prusiner SB, Millhauser GL (1997) Kinetics and mechanism of amyloid formation by the prion protein H1 peptide as determined by time-dependent ESR. Chem Biol 4:345–355

    Article  CAS  Google Scholar 

  125. Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T, Tochio H, Shirakawa M (2010) Distance determination in proteins inside Xenopus laevis oocytes by double electron-electron resonance experiments. J Am Chem Soc 132:8228–8229

    Article  CAS  Google Scholar 

  126. Drescher M, Godschalk F, Veldhuis G, van Rooijen BD, Subramaniam V, Huber M (2008) Spin-label EPR on alpha-synuclein reveals differences in the membrane binding affinity of the two antiparallel helices. Chembiochem 9:2411–2416

    Article  CAS  Google Scholar 

  127. Chen M, Margittai M, Chen J, Langen R (2007) Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 282:24970–24979

    Article  CAS  Google Scholar 

  128. Der-Sarkissian A, Jao CC, Chen J, Langen R (2003) Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J Biol Chem 278:37530–37535

    Article  CAS  Google Scholar 

  129. Masuda M, Dohmae N, Nonaka T, Oikawa T, Hisanaga SI, Goedert M, Hasegawa M (2006) Cysteine misincorporation in bacterially expressed human alpha-synuclein. FEBS Lett 580:1775–1779

    Article  CAS  Google Scholar 

  130. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372

    Article  CAS  Google Scholar 

  131. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  CAS  Google Scholar 

  132. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280:9595–9603

    Article  CAS  Google Scholar 

  133. Chandra S, Chen XC, Rizo J, Jahn R, Sudhof TC (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278:15313–15318

    Article  CAS  Google Scholar 

  134. Bussell R, Eliezer D (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778

    Article  CAS  Google Scholar 

  135. Bussell R, Ramlall TF, Eliezer D (2005) Helix periodicity, topology, and dynamics of membrane-associated alpha-synuclein. Prot Sci 14:862–872

    Article  CAS  Google Scholar 

  136. Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci USA 105:19666–19671

    Article  CAS  Google Scholar 

  137. Borbat P, Ramlall TF, Freed JH, Eliezer D (2006) Inter-helix distances in lysophospholipid micelle-bound alpha-synuclein from pulsed ESR measurements. J Am Chem Soc 128:10004–10005

    Article  CAS  Google Scholar 

  138. Bortolus M, Tombolato F, Tessari I, Bisaglia M, Mammi S, Bubacco L, Ferrarini A, Maniero AL (2008) Broken helix in vesicle and micelle-bound alpha-synuclein: insights from site-directed spin labeling-EPR experiments and MD simulations. J Am Chem Soc 130:6690–6691

    Article  CAS  Google Scholar 

  139. Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2008) Membrane-bound alpha-synuclein forms an extended helix: long-distance pulsed ESR measurements using vesicles, bicelles, and rodlike micelles. J Am Chem Soc 130:12856–12857

    Article  CAS  Google Scholar 

  140. Robotta M, Braun P, van Rooijen B, Subramaniam V, Huber M, Drescher M (2011) Direct evidence of coexisting horseshoe and extended helix conformations of membrane-bound alpha-synuclein. Chemphyschem 12:267–269

    Article  CAS  Google Scholar 

  141. Georgieva ER, Ramlall TF, Borbat PP, Freed JH, Eliezer D (2010) The lipid-binding domain of wild type and mutant alpha-synuclein compactness and interconversation between the broken and extended helix forms. J Biol Chem 285:28261–28274

    Article  CAS  Google Scholar 

  142. Trexler AJ, Rhoades E (2009) Alpha-synuclein binds large unilamellar vesicles as an extended helix. Biochemistry 48:2304–2306

    Article  CAS  Google Scholar 

  143. Ramakrishnan M, Jensen PH, Marsh D (2003) Alpha-synuclein association with phosphatidylglycerol probed by lipid spin labels. Biochemistry 42:12919–12926

    Article  CAS  Google Scholar 

  144. Bussell R, Ramlall TF, Eliezer D (2005) Helix periodicity, topology, and dynamics of membrane-associated alpha-synuclein. Protein Sci 14(4):862–872. doi:Doi 10.1110/Ps.041255905

    Article  CAS  Google Scholar 

  145. Kamp F, Beyer K (2006) Binding of alpha-synuclein affects the lipid packing in bilayers of small vesicles. J Biol Chem 281(14):9251–9259. doi:DOI 10.1074/jbc.M512292200

    Article  CAS  Google Scholar 

  146. Ramakrishnan M, Jensen PH, Marsh D (2006) Association of alpha-synuclein and mutants with lipid membranes: spin-label ESR and polarized IR. Biochemistry 45(10):3386–3395. doi:10.1021/bi052344d

    Article  CAS  Google Scholar 

  147. Drescher M, van Rooijen BD, Veldhuis G, Subramaniam V, Huber M (2010) A stable lipid-induced aggregate of alpha-synuclein. J Am Chem Soc 132:4080–4081

    Article  CAS  Google Scholar 

  148. Bordignon E (2011) Site-directed spin labeling of membrane proteins. Top Curr Chem. doi:10.1007/128_2011_243

    Google Scholar 

Download references

Acknowledgements

I am indebted to C. Jao, J. Freed, G. Jeschke, and R. Langen for permission to reproduce figures. I wish to thank Dr. Martina Huber and Prof. Dr. Vinod Subramaniam for a longstanding cooperation, Marco Wassmer, Martin Spitzbarth, and Christian Hintze for designing figures, and Gunnar Jeschke and the EPR people in Konstanz for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Drescher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drescher, M. (2011). EPR in Protein Science. In: Drescher, M., Jeschke, G. (eds) EPR Spectroscopy. Topics in Current Chemistry, vol 321. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_235

Download citation

Publish with us

Policies and ethics