Skip to main content

Combining Biophysical Screening and X-Ray Crystallography for Fragment-Based Drug Discovery

  • Chapter
  • First Online:
Fragment-Based Drug Discovery and X-Ray Crystallography

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 317))

Abstract

Over the past decade, fragment-based drug discovery (FBDD) has gained importance for the generation of novel ideas to inspire synthetic chemistry. In order to identify small molecules that bind to a target protein, multiple approaches have been utilized by various groups in the pharmaceutical industry and by academic groups. The combination of fragment screening by biophysical methods and in particular with surface plasmon resonance technologies (SPR) together with the visualization of the binding properties by X-ray crystallography offers a number of benefits. Screening by SPR identifies ligands for a target protein as well as provides an assessment of the binding properties with respect to affinity, stoichiometry, and specificity of the interaction. Despite the huge technology advances of the past years, X-ray crystallography is still a resource-intensive technology, and SPR binding data provides excellent measures to prioritize X-ray experiments and consequently enable a better success rate in obtaining structural information. Information on the chemical structures of fragments binding to a protein can be used to perform similarity searches in compound libraries in order to establish structure–activity relationships as well as to explore particular scaffolds. At Roche we have applied this workflow for a number of targets and the experiences will be outlined in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BACE:

β-Secretase

HTS:

High-throughput screening

ITC:

Isothermal calorimetry

LIMS:

Lab information management system

NMR:

Nuclear magnetic resonance

SLS:

Swiss light source

SPR:

Surface plasmon resonance

Stdv:

Standard deviation

wt:

Wild type

References

  1. Ringe D (1995) What makes a binding site a binding site? Curr Opin Struct Biol 5:825–829

    Article  CAS  Google Scholar 

  2. Boehm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43:2664–2674

    Article  CAS  Google Scholar 

  3. Erlanson DA, McDowell RS, O'Brien T (2004) Fragment-based drug discovery. J Med Chem 47:3463–3482

    Article  CAS  Google Scholar 

  4. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672

    Article  CAS  Google Scholar 

  5. Hubbard RE, Davis B, Chen I, Drysdale MJ (2007) The SeeDs approach: integrating fragments into drug discovery. Curr Top Med Chem 7:1568–1581

    Article  CAS  Google Scholar 

  6. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431

    Article  Google Scholar 

  7. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002

    Article  CAS  Google Scholar 

  8. Dalvit D (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14:1051–1057

    Article  CAS  Google Scholar 

  9. Bartoli S, Fincham CI, Fattori D (2006) The fragment-approach: an update. Drug Discov Today Technol 3:425–431

    Article  Google Scholar 

  10. Barker J, Courtney S, Hesterkamp T, Ullmann D, Whittaker M (2005) Fragment screening by biochemical assay. Exp Opin Drug Discov 1:225–236

    Google Scholar 

  11. Kuglstatter A, Stahl M, Peters JU, Huber W, Stihle M, Schlatter D, Benz J, Ruf A, Roth D, Enderle T, Hennig M (2008) Tyramine fragment binding to BACE. Bioorg Med Chem Lett 18:1304–1307

    Article  CAS  Google Scholar 

  12. Holdgate GA, Anderson M, Edfeldt F, Geschwindner S (2010) Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: matching high information content with high throughput. J Struct Biol 172:142–157

    Article  CAS  Google Scholar 

  13. Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11:485–493

    Article  CAS  Google Scholar 

  14. Davies TG, Tickle IJ (2011) Fragment screening using X-ray crystallography. Top Curr Chem. doi:10.1007/128_2011_179

    Google Scholar 

  15. Dalvit C, Fogliattob G, Stewart A, Veronesia M, Stockman B (2001) WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR 21:349–359

    Article  CAS  Google Scholar 

  16. Jahnke W (2007) Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility. J Biomol NMR 39:87–90

    Article  CAS  Google Scholar 

  17. Shuker BS, Hajduk PJ, Meadows RP, Fesik AW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    Article  CAS  Google Scholar 

  18. Pellecchia M, Bertini I, Cowburn D, Dalvit D, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C, Meyer B, Oschkinat H, Peng J, Schwalbe H, Siegal S (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745

    Article  CAS  Google Scholar 

  19. Rathore R, Corr JJ, Lebre DT, Seibel WL, Greis KD (2009) Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates. Rapid Commun Mass Spectrom 23:3293–3300

    Article  CAS  Google Scholar 

  20. Annis DA, Nickbarg E, Yang X, Ziebell MR, Whitehurst CE (2007) Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr Opin Chem Biol 11:518–526

    Article  CAS  Google Scholar 

  21. Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9:24–27

    Article  Google Scholar 

  22. Freire E (2008) Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 13:869–874

    Article  CAS  Google Scholar 

  23. Lo M-C, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G (2004) Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 332:153–159

    Article  CAS  Google Scholar 

  24. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E, Carver T, Asel E, Springer BA, Pamela P, Salemme FR (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen 6:429–440

    Article  CAS  Google Scholar 

  25. Cimmperman P, Baranauskiene L, Jachimovičiute S, Jachno J, Torresan J, Michailoviene V, Matuliene J, Sereikaite J, Bumelis V, Matulis D (2008) A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 95:3222–3231

    Article  CAS  Google Scholar 

  26. Kussrow A, Enders CS, Morcos EF, Bornhop DJ (2009) Backscattering interferometry for low sample consumption molecular interaction screening. JALA 14:341–347

    Article  CAS  Google Scholar 

  27. Markov DA, Swinney K, Bornhop DJ (2004) Label-free molecular interaction determinations with nanoscale interferometry. J Am Chem Soc 126:16659–16664

    Article  CAS  Google Scholar 

  28. Zartler ER, Huaping M (2007) Practical aspects of NMR-based fragment discovery. Curr Top Med Chem 7:1592–1599

    Article  CAS  Google Scholar 

  29. Klein J, Meinecke R, Mayer M, Meyer B (1999) Detecting binding affinity to immobilized receptor proteins in compound libraries by HR-MAS STD NMR. J Am Chem Soc 121:5336–5337

    Article  CAS  Google Scholar 

  30. Gossert AD, Henry Ch, Blommers MJJ, Jahnke W, Fernández C (2009) Time efficient detection of protein–ligand interactions with the polarization optimized PO-WaterLOGSY NMR experiment. J Biomol NMR 43:211–217

    Article  CAS  Google Scholar 

  31. Skinner AL, Laurence JS (2008) High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J Pharm Sci 97:4670–4695

    Article  CAS  Google Scholar 

  32. Ross A, Schlotterbeck G, Klaus W, Senn H (2000) Automation of NMR measurements and data evaluation for systematically screening interactions of small molecules with target proteins. J Biomol NMR 16:139–146

    Article  CAS  Google Scholar 

  33. Damberg ChS, Orekhov VY, Billeter M (2002) Automated analysis of large sets of heteronuclear correlation spectra in NMR-based drug discovery. J Med Chem 45:5649–5654

    Article  CAS  Google Scholar 

  34. Johnsson B, Löfåǻs S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific analysis in surface plasmon resonance. Anal Biochem 198:268–277

    Article  CAS  Google Scholar 

  35. Cunningham B, Lin B, Qiu J, Li P, Pepper J, Hugh B (2002) A plastic resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens Actuators B 85:219–226

    Article  Google Scholar 

  36. Huber W, Mueller F (2006) Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Design 12:3999–4021

    Article  CAS  Google Scholar 

  37. Hämäläinen MD, Zhukov A, Ivarsson M, Fex T, Gottfries J, Karlsson R, Björsne M (2008) Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J Biomol Screen 13:202–209

    Article  Google Scholar 

  38. Nordström H, Gossas T, Hämäläinen M, Källblad P, Nyström S, Wallberg H, Danielson UH (2008) Identification of MMP-12 inhibitors by using biosensor-based screening of a fragment Library. J Med Chem 51:3449–3459

    Article  Google Scholar 

  39. Perspicace S, Banner D, Benz J, Müller F, Schlatter D, Huber W (2009) Fragment-based screening using surface plasmon resonance technology. J Biomol Screen 14:337–349

    Article  CAS  Google Scholar 

  40. Antonysamy SS, Aubol B, Blaney J, Browner MF, Giannetti AM, Harris SF, Hébert N, Hendle J, Hopkins S, Jefferson E, Kissinger Ch, Leveque V, Marciano D, McGee E, Nájera I, Nolan B, Tomimoto M, Torresa E, Wrighta T (2008) Fragment-based discovery of hepatitis C virus NS5b RNA polymerase inhibitors. Bioorg Med Chem Lett 18:2990–2995

    Article  CAS  Google Scholar 

  41. Rich RL, Myszka DG (2010) Kinetic analysis and fragment screening with Fujifilm AP-3000. Anal Biochem 402:170–178

    Article  CAS  Google Scholar 

  42. Rich RL, Quinn JG, Morton T, Stepp JD, Myszka DG (2010) Biosensor-based fragment screening using FastStep injections. Anal Biochem 407:270–271

    Article  CAS  Google Scholar 

  43. Huber W (2005) A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound–target interactions. J Mol Recogn 18:273–281

    Article  CAS  Google Scholar 

  44. Geschwindner S, Olsson LL, Albert JS, Deinum J, Edwards PD, de BT, Folmer RH (2007) Discovery of a novel warhead against beta-secretase through fragment-based lead generation. J Med Chem 50:5903–5911

    Article  CAS  Google Scholar 

  45. Johnsson B, Löfås S, Lindquist G, Edström A, Müller Hillgren RM, Hansson A (1995) Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies. J Mol Recogn 8:125--131

    Google Scholar 

  46. O’Shannessy DJ, O’Donell KC, Martin J, Brigham-Burke M (1995) Detection and quantitation of hexa-His-tagged recombinant proteins on Western blots and by surface plasmon resonance technology. Anal Biochem 229:119–124

    Article  Google Scholar 

  47. Wear MA, Patterson A, Malone K, Dunsmore C, Turner NJ, Walkinshaw MD (2005) A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A. Anal Biochem 345:214–226

    Article  CAS  Google Scholar 

  48. Yoshitani N, Saito K, Saikawa W, Asanuma M, Yokoyama S, Hirotal H (2007) NTA-mediated protein capturing strategy in screening experiments for small organic molecules by surface plasmon resonance. Proteomics 7(494):9

    Google Scholar 

  49. Lue RYP, Chen GYJ, Qing Zhu YH, Yao SQ (2003) Versatile protein biotinylation strategies for potential high-throughput proteomics. J Am Chem Soc 126:1055–1062

    Article  Google Scholar 

  50. Papalia GA, Giannetti AM, Arora N, Myszka DG (2008) Thermodynamic characterization of pyrazole and azaindole derivatives binding to p38 mitogen-activated protein kinase using Biacore T100 technology and van’t Hoff analysis. Anal Biochem 383:255–264

    Article  CAS  Google Scholar 

  51. Huber W, Perspicace S, Kohler J, Müller F, Schlatter S (2004) SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins. Anal Biochem 333:280–288

    Article  CAS  Google Scholar 

  52. Giannetti AM, Koch BD, Browner MF (2008) Surface plasmon resonance based assay for the detection and characterization of promiscuous inhibitors. J Med Chem 51:574–580

    Article  CAS  Google Scholar 

  53. Murray CW, Blundel TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20:497–507

    Article  CAS  Google Scholar 

  54. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  Google Scholar 

  55. Früh V, Zhou Y, Chen D, Loch C, Eiso AB, Grinkova YN, Verheij H, Sligar SG, Bushweller JH, Siegall G (2010) Application of fragment-based drug discovery to membrane proteins: identification of ligands of the integral membrane enzyme DsbB. Chem Biol 17:881–891

    Article  Google Scholar 

  56. Broennimann Ch, Eikenberry EF, Henrich B, Horisberger R, Huelsen G, Pohl E, Schmitt B, Schulze-Briese C, Suzuki M, Tomizaki T, Toyokawa H, Wagner A (2006) The PILATUS 1M detector. J Synchrotron Radiat 2006(Pt 2):120–130

    Article  Google Scholar 

  57. Jacquamet L, Joly J, Bertoni A, Charrault P, Pirocchi M, Vernede X, Bouis F, Borel F, Périn JP, Denis T, Rechatin JL, Ferrer JL (2009) Upgrade of the CATS sample changer on FIP-BM30A at the ESRF: towards a commercialized standard. J Synchrotron Radiat 16:14–21

    Article  CAS  Google Scholar 

  58. Haquin S, Oeuillet E, Pajon A, Harris M, Jones AT, van Tilbeurgh H, Markley JL, Zolnai Z, Poupon A (2008) Data management in structural genomics: an overview. Methods Mol Biol 426:49–79

    Article  CAS  Google Scholar 

  59. Gerber PR (1992) Peptide mechanics: a force field for peptides and proteins working with entire residues as small unites. Biopolymers 32:1003–1017

    Article  CAS  Google Scholar 

  60. Kuglstatter A, Hennig M (2010) Fragment based approaches for identification of BACE inhibitors. In: Varghese J (ed) BACE lead target for orchestrated therapy of Alzheimer’s disease. Wiley, New Jersey, pp 107–121

    Google Scholar 

  61. Murray CW, Callaghan O, Chessari G, Cleasby A, Congreve M, Frederickson M, Hartshorn MJ, McMenamin R, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to beta-secretase. J Med Chem 50:1116–1123

    Article  CAS  Google Scholar 

  62. Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, Campbell JB, Carr RA, Chessari G, Congreve M, Frederickson M, Folmer RH, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Murray CW, Olsson LL, Patel S, Spear N, Tian G (2007) Application of fragment-based lead generation to the discovery of novel, cyclic amidine beta-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J Med Chem 50:5912–5925

    Article  CAS  Google Scholar 

  63. Congreve M, Aharony D, Albert J, Callaghan O, Campbell J, Carr RA, Chessari G, Cowan S, Edwards PD, Frederickson M, McMenamin R, Murray CW, Patel S, Wallis N (2007) Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of beta-secretase. J Med Chem 50:1124–1132

    Article  CAS  Google Scholar 

  64. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105:3041–3046

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank all colleagues at Roche involved in fragment screening and exploration work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hennig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Hennig, M., Ruf, A., Huber, W. (2011). Combining Biophysical Screening and X-Ray Crystallography for Fragment-Based Drug Discovery. In: Davies, T., Hyvönen, M. (eds) Fragment-Based Drug Discovery and X-Ray Crystallography. Topics in Current Chemistry, vol 317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_225

Download citation

Publish with us

Policies and ethics