Skip to main content

Data Sampling in Multidimensional NMR: Fundamentals and Strategies

  • Chapter
  • First Online:
Book cover Novel Sampling Approaches in Higher Dimensional NMR

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 316))

Abstract

Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (free induction decay) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform, the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records were already well understood, and despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. In this chapter we review the fundamentals of uniform and nonuniform sampling methods in one- and multidimensional NMR.

Keywords

An erratum to this chapter is available at http://dx.doi.org/10.1007/211822_1_En_291

An erratum to this chapter can be found at http://dx.doi.org/10.1007/128_2011_291

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ernst RR, Anderson WA (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37:93–102

    Article  CAS  Google Scholar 

  2. Hoch JC, Stern AS (1996) NMR data processing. Wiley-Liss, New York

    Google Scholar 

  3. Beckman RA, Zuiderweg ERP (1995) Guidelines for the use of oversampling in protein NMR. J Magn Reson A113:223–231

    Google Scholar 

  4. Delsuc MA, Lallemand JY (1986) Improvement of dynamic range in NMR by oversampling. J Magn Reson 69:504–507

    CAS  Google Scholar 

  5. Rovnyak D, Hoch JC, Stern AS, Wagner G (2004) Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy. J Biomol NMR 30:1–10

    Article  CAS  Google Scholar 

  6. Jeener J (1971) Oral presentation, Ampere International Summer School, Yugoslavia

    Google Scholar 

  7. States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48:286–292

    CAS  Google Scholar 

  8. Stern AS, Li K-B, Hoch JC (2002) Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. J Am Chem Soc 124:1982–1993

    Article  CAS  Google Scholar 

  9. Wernecke SJ, D’ Addario LR (1977) Maximum entropy image reconstruction. IEEE Trans Comput 26:351–364

    Article  Google Scholar 

  10. Skilling J, Bryan R (1984) Maximum entropy image reconstruction: general algorithm. Mon Not R Astron Soc 211:111–124

    Google Scholar 

  11. Stern AS, Donoho DL, Hoch JC (2007) NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction. J Magn Reson 188:295–300

    Article  CAS  Google Scholar 

  12. Hyberts SG, Heffron GJ, Tarragona NG, Solanky K, Edmonds KA, Luithardt H, Fejzo J, Chorev M, Aktas H, Colson K, Falchuk KH, Halperin JA, Wagner G (2007) Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 129:5108–5116

    Article  CAS  Google Scholar 

  13. Bretthorst GL (1990) Bayesian Analysis I. Parameter estimation using quadrature NMR models. J Magn Reson 88:533–551

    CAS  Google Scholar 

  14. Chylla RA, Markley JL (1993) Improved frequency resolution in multidimensional constant-time experiments by multidimensional Bayesian analysis. J Biomol NMR 3:515–533

    Article  CAS  Google Scholar 

  15. Chylla RA, Markley JL (1995) Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data. J Biomol NMR 5:245–258

    Article  CAS  Google Scholar 

  16. Jaravine V, Ibraghimov I, Orekhov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3:605–607

    Article  CAS  Google Scholar 

  17. Bro R (1997) PARAFAC. Tutorial and applications. Chemometr Intell Lab Syst 38:149–171

    Article  CAS  Google Scholar 

  18. Kazimierczuk K, Kozminski W, Zhukov I (2006) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328

    Article  CAS  Google Scholar 

  19. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in Fortran. Cambridge University Press, Cambridge

    Google Scholar 

  20. Pannetier N, Houben K, Blanchard L, Marion D (2007) Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins. J Magn Reson 186:142–149

    Article  CAS  Google Scholar 

  21. Bodenhausen G, Ernst RR (1969) The accordion experiment, a simple approach to three-dimensional NMR spectroscopy. J Magn Reson 45(1981):367–373

    Google Scholar 

  22. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling: an alternative method for sampling in two dimensional NMR experiments. J Magn Reson 73:69

    CAS  Google Scholar 

  23. Carr PA, Fearing DA, Palmer AG (1998) 3D accordion spectroscopy for measuring15N and13CO relaxation rates in poorly resolved NMR spectra. J Magn Reson 132:25–33

    Article  CAS  Google Scholar 

  24. Chen K, Tjandra N (2009) Direct measurements of protein backbone 15 N spin relaxation rates from peak line-width using a fully-relaxed Accordion 3D HNCO experiment. J Magn Reson 197:71–76

    Article  CAS  Google Scholar 

  25. Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993) Reduced dimensionality in triple resonance NMR experiments. J Am Chem Soc 115:9307–9308

    Article  CAS  Google Scholar 

  26. Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993) 3D 13 C-15 N-heteronuclear two-spin coherence spectroscopy for polypeptide backbone assignments in 13 C-15 N-double-labeled proteins. J Biomol NMR 3:127–132

    CAS  Google Scholar 

  27. Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  CAS  Google Scholar 

  28. Coggins BE, Zhou P (2006) Polar Fourier transforms of radially sampled NMR data. J Magn Reson 182:84–95

    Article  CAS  Google Scholar 

  29. Coggins BE, Zhou P (2007) Sampling of the NMR time domain along concentric rings. J Magn Reson 184:207–221

    Article  CAS  Google Scholar 

  30. Bretthorst GL (2001) Nonuniform sampling: bandwidth and aliasing. In: Rychert J, Erickson G, Smith CR (eds) Maximum entropy and Bayesian methods in science and engineering. Springer, New York, pp 1–28

    Google Scholar 

  31. Bretthorst GL (2008) Nonuniform sampling: bandwidth and aliasing. Concepts Magn Reson 32A:417–435

    Article  CAS  Google Scholar 

  32. Schmieder P, Stern AS, Wagner G, Hoch JC (1993) Application of nonlinear sampling schemes to COSY-type spectra. J Biomol NMR 3:569–576

    Article  CAS  Google Scholar 

  33. Schmieder P, Stern AS, Wagner G, Hoch JC (1994) Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J Biomol NMR 4:483–490

    Article  CAS  Google Scholar 

  34. Aggarwal K, Delsuc MA (1997) Triangular sampling of multidimensional NMR data sets. Magn Reson Chem 35:593–596

    Article  CAS  Google Scholar 

  35. Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536

    Article  CAS  Google Scholar 

  36. Hiller S, Fiorito F, Wüthrich K (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10888

    Article  CAS  Google Scholar 

  37. Bartels C, Xia T-H, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 5:1–10

    Article  Google Scholar 

  38. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  Google Scholar 

  39. Johnson BA (2004) Using NMR view to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352

    CAS  Google Scholar 

  40. Goddard TD, Kneller DG (2006) SPARKY 3, University of California, San Francisco

    Google Scholar 

  41. Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 132:2145–2147

    Article  CAS  Google Scholar 

  42. Maciejewski MW, Qui HZ, Rujan I, Mobli M, Hoch JC (2009) Nonuniform sampling and spectral aliasing. J Magn Reson 199:88–93

    Article  CAS  Google Scholar 

  43. Kumar A, Brown SC, Donlan ME, Meier BU, Jeffs PW (1991) Optimization of two-dimensional NMR by matched accumulation. J Magn Reson 95:1–9

    CAS  Google Scholar 

  44. Mehdi M, Alan SS, Jeffrey CH (2006) Spectral Reconstruction Methods in Fast NMR: Reduced Dimensionality, Random Sampling, and Maximum Entropy Reconstruction. J Magn Reson 192:96–105

    Google Scholar 

  45. Mehdi M, Alan SS, Wolfgang B, Glenn FK, Jeffrey CH, (2010) A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. J Magn Reson 204:160–164

    Google Scholar 

  46. Hoch JC, Maciejewski MW, Filipovic B (2008) Randomization improves sparse sampling in multidimensional NMR. J Magn Reson 193:317–20

    Google Scholar 

  47. Mark WM, Harry Z, Qui IR, Mehdi M, Jeffrey CH (2009) Nonuniform sampling and spectral aliasing. J Magn Reson 199:88–93

    Google Scholar 

Download references

Acknowledgements

We thank Gerhard Wagner for providing a pre-publication manuscript for the contribution by Hyberts and Wagner in this volume. We thank Sven Hyberts for providing the Poisson gap sampling schedules used in Fig. 8, and for helpful discussions. JCH gratefully acknowledges support from the US National Institutes of Health (grants GM047467 and RR020125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Hoch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maciejewski, M.W., Mobli, M., Schuyler, A.D., Stern, A.S., Hoch, J.C. (2011). Data Sampling in Multidimensional NMR: Fundamentals and Strategies. In: Billeter, M., Orekhov, V. (eds) Novel Sampling Approaches in Higher Dimensional NMR. Topics in Current Chemistry, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2011_185

Download citation

Publish with us

Policies and ethics