Skip to main content

Spin-Polarized Electron Induced Asymmetric Reactions in Chiral Molecules

  • Chapter
  • First Online:

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 298))

Abstract

Understanding the origin of chirality in nature has been an active area of research since the time of Pasteur. In this chapter we examine one possible route by which this asymmetry could have arisen, namely chiral-specific chemistry induced by spin-polarized electrons. The various sources of spin-polarized electrons (parity violation, photoemission, and secondary processes) are discussed. Experiments aimed at exploring these interactions are reviewed starting with those based on the Vester–Ulbricht hypothesis through recent studies of spin polarized secondary electrons from a magnetic substrate. We will conclude with a discussion of possible new avenues of research that could impact this area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pasteur L (1874) C R Acad Sci, Comptes Rendus de l'Académie des Science (1 Jun 1874), Paris

    Google Scholar 

  2. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528

    Article  CAS  Google Scholar 

  3. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth: several questions about the origin of life have been answered, but much remains to be studied. Science 130:245

    Article  CAS  Google Scholar 

  4. Bernstein MP, Dworkin JP, Sandford SA et al (2002) Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416:401–403

    Article  CAS  Google Scholar 

  5. Munoz Caro GM, Meierhenrich UJ, Schutte WA et al (2002) Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416:403–406

    Article  CAS  Google Scholar 

  6. Avalos M, Babiano R, Cintas P et al (1998) Absolute asymmetric synthesis under physical fields: facts and fictions. Chem Rev 98:2391–2404

    Article  CAS  Google Scholar 

  7. Bonner WA (1991) The origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21:59–111

    Article  CAS  Google Scholar 

  8. Cintas P (2002) Chirality of living systems: a helping hand from crystals and oligopeptides. Angew Chem Int Ed 41:1139–1145

    Article  CAS  Google Scholar 

  9. Feringa BL, RAv D (1999) Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed 38:3418–3438

    Article  Google Scholar 

  10. Keszthelyi L (1995) Origin of the homochirality of biomolecules. Q Rev Biophys 28:473–507

    Article  CAS  Google Scholar 

  11. Podlech J (2001) Origin of organic molecules and biomolecular homochirality. Cell Mol Life Sci 58:44–60

    Article  CAS  Google Scholar 

  12. Tsarev V (2009) Physical and astrophysical aspects of the problem of origin of chiral asymmetry of the biosphere. Phys Part Nuclei 40:998–1029

    Article  CAS  Google Scholar 

  13. Bailey J (2001) Astronomical sources of circularly polarized light and the origin of homochirality. Orig Life Evol Biosph 31:167–183

    Article  CAS  Google Scholar 

  14. Griesbeck AG, Meierhenrich UJ (2002) Asymmetric photochemistry and photochirogenesis. Angew Chem Int Ed 41:3147–3154

    Article  Google Scholar 

  15. Inoue Y, Ramamurthy V (2004) Chiral photochemistry. Marcel Decker, New York

    Book  Google Scholar 

  16. Jorissen A, Cerf C (2002) Asymmetric photoreactions as the origin of biomolecular homochirality: a critical review. Orig Life Evol Biosph 32:129–142

    Article  CAS  Google Scholar 

  17. Meierhenrich UJ, Thiemann WHP (2004) Photochemical concepts on the origin of biomolecular asymmetry. Orig Life Evol Biosph 34:111–121

    Article  CAS  Google Scholar 

  18. Meierhenrich U (2008) Amino acids and the asymmetry of life. Springer, Berlin

    Google Scholar 

  19. Buchardt O (1974) Photochemistry with circularly polarized light. Angew Chem Int Ed Engl 13:179–185

    Article  Google Scholar 

  20. Inoue Y, Tsuneishi H, Hakushi T et al (1996) First absolute asymmetric synthesis with circularly polarized synchrotron radiation in the vacuum ultraviolet region: direct photoderacemization of (e)-cyclooctene. Chem Commun 2627

    Google Scholar 

  21. Meierhenrich UJ, Nahon L, Alcaraz C et al (2005) Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew Chem Int Ed 44:5630–5634

    Article  CAS  Google Scholar 

  22. Lee TD, Yang CN (1956) Question of parity conservation in weak interactions. Phys Rev 104:254

    Article  CAS  Google Scholar 

  23. Wu CS, Ambler E, Hayward RW et al (1957) Experimental test of parity conservation in beta decay. Phys Rev 105:1413

    Article  CAS  Google Scholar 

  24. Feder R (ed) (1985) Polarized electrons in surface physics. World Scientific, Singapore

    Google Scholar 

  25. Johnson PD (1997) Spin-polarized photoemission. Rep Prog Phys 1217

    Google Scholar 

  26. Kessler J (1985) Polarized electrons, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  27. Kirschner J (1985) Polarized electrons at surfaces. Springer, Berlin

    Google Scholar 

  28. Osterwalder J (2006) Spin-polarized photoemission. In: Beaurepaire E, Bulou H, Scheurer F, Kappler JP (eds) Magnetism: a synchrotron radiation approach. Springer, Berlin, pp 95–120

    Chapter  Google Scholar 

  29. Allenspach R, Taborelli M, Landolt M (1985) Oxygen on Fe(100): an initial-oxidation study by spin-polarized Auger spectroscopy. Phys Rev Lett 55:2599

    Article  CAS  Google Scholar 

  30. De Nadai C, van der Laan G, Dhesi SS et al (2003) Spin-polarized magnetic circular dichroism in Ni 2p core-level photoemission. Phys Rev B 68:212401

    Article  CAS  Google Scholar 

  31. Kachel T, Carbone C, Gudat W (1993) Spin polarization of core-level photoelectrons. Phys Rev B 47:15391

    Article  CAS  Google Scholar 

  32. Menchero JG (1996) Spin polarization and magnetic circular dichroism in photoemission from the 2p core level of ferromagnetic Ni. Phys Rev Lett 76:3208

    Article  CAS  Google Scholar 

  33. Sinkovic B, Tjeng LH, Brookes NB et al (1997) Local electronic and magnetic structure of Ni below and above Tc: a spin-resolved circularly polarized resonant photoemission study. Phys Rev Lett 79:3510

    Article  CAS  Google Scholar 

  34. Starke K, Kaduwela AP, Liu Y et al (1996) Spin-polarized photoelectrons excited by circularly polarized radiation from a nonmagnetic solid. Phys Rev B 53:R10544

    Article  CAS  Google Scholar 

  35. Thole BT, van der Laan G (1991) Origin of spin polarization and magnetic dichroism in core-level photoemission. Phys Rev Lett 67:3306

    Article  CAS  Google Scholar 

  36. Matthew JAD, Seddon EA, Xu YBO (1998) Spin polarized photoemission from amorphous alloy surfaces. J Electron Spectrosc Relat Phenomena 88–91:171–177

    Article  Google Scholar 

  37. Andreyev O, Koroteev YM, Snchez Albaneda M et al (2006) Spin-resolved two-photon photoemission study of the surface resonance state on Co/Cu(001). Phys Rev B 74:195416

    Google Scholar 

  38. Pierce DT, Meier F (1976) Photoemission of spin-polarized electrons from GaAs. Phys Rev B 13:5484

    Article  CAS  Google Scholar 

  39. Meier F, Pescia D (1981) Band-structure investigation of gold by spin-polarized photoemission. Phys Rev Lett 47:374

    Article  CAS  Google Scholar 

  40. Schmiedeskamp B, Vogt B, Heinzmann U (1988) Experimental verification of a new spin-polarization effect in photoemission: polarized photoelectrons from Pt(111) with linearly polarized radiation in normal incidence and normal emission. Phys Rev Lett 60:651

    Article  CAS  Google Scholar 

  41. Heinzmann U (1987) Angle-, energy- and spin-resolved photoelectron emission using circularly polarized synchrotron radiation. Phys Scr T17:77

    Article  CAS  Google Scholar 

  42. Koike K, Kirschner J (1992) Primary energy dependence of secondary electron polarization. J Phys D Appl Phys 1139

    Google Scholar 

  43. Penn DR, Apell SP, Girvin SM (1985) Spin polarization of secondary electrons in transition metals: theory. Phys Rev B 32:7753

    Article  CAS  Google Scholar 

  44. Penn DR, Apell SP, Girvin SM (1985) Theory of spin-polarized secondary electrons in transition metals. Phys Rev Lett 55:518

    Article  Google Scholar 

  45. Solleder B, Lemell C, Tokesi K et al (2007) Spin-dependent low-energy electron transport in metals. Phys Rev B 76:075115

    Article  CAS  Google Scholar 

  46. Tamura K, Yasuda M, Murata K et al (1999) Analysis of the spin polarization of secondary electrons emitted from permalloy polycrystals. Jpn J Appl Phys 38:7173

    Article  CAS  Google Scholar 

  47. Pfandzelter R, Bernhard T, Winter H (2001) Spin-polarized electrons in collisions of multicharged nitrogen ions with a magnetized Fe(001) surface. Phys Rev Lett 86:4152

    Article  CAS  Google Scholar 

  48. Kisker E, Gudat W, Schroder K (1982) Observation of a high spin polarization of secondary electrons from single crystal Fe and Co. Solid State Commun 44:591–595

    Article  CAS  Google Scholar 

  49. Boeglin C (1993) Spin-polarized electron emission from Fe(100) by circularly polarized synchrotron radiation. J Magn Magn Mater 121:130–133

    Article  CAS  Google Scholar 

  50. Pfandzelter R, Winter H, Urazgil'din I et al (2003) Spin-polarized electron emission during impact of fast ions on a magnetized Fe(100) surface. Phys Rev B 68:165415

    Article  CAS  Google Scholar 

  51. Kirschner J, Koike K, Oepen HP (1987) Spin polarization of ion-excited secondary electrons from ferromagnets and its application for magnetic sputter depth profiling. Phys Rev Lett 59:2099

    Article  CAS  Google Scholar 

  52. Kirschner J, Koike K (1992) Spin polarization of secondary electrons from Fe(110) excited by unpolarized primary electrons. Surf Sci 273:147–159

    Article  CAS  Google Scholar 

  53. Koike K, Furukawa T, Cameron GP et al (1994) Intensity and polarization oscillation of secondary electrons emitted from Au/Fe(110). Phys Rev B 50:4816

    Article  CAS  Google Scholar 

  54. Busch M, Gruyters M, Winter H (2006) Spin polarization and structure of thin iron oxide layers prepared by oxidation of Fe(110). Surf Sci 600:4166–4169

    Article  CAS  Google Scholar 

  55. Koike K, Furukawa T (1996) Evidence for ferromagnetic order at the FeO(111) surface. Phys Rev Lett 77:3921

    Article  CAS  Google Scholar 

  56. Paul O, Toscano S, Totland K et al (1991) The spatial origin of the spin-polarization of secondary-electron emission from Fe. Surf Sci 251–252:27–30

    Article  Google Scholar 

  57. Pfandzelter R, Ostwald M, Winter H (2001) Spin-polarized electron emission induced by impact of protons and electrons on Cr/Fe(1†0†0). Surf Sci 488:90–98

    Article  CAS  Google Scholar 

  58. Unguris J, Pierce DT, Galejs A et al (1982) Spin and energy analyzed secondary electron emission from a ferromagnet. Phys Rev Lett 49:72

    Article  CAS  Google Scholar 

  59. Hopster H (1987) Spin polarization of secondary electrons from amorphous 3d metallic ferromagnets. Phys Rev B 36:2325

    Article  CAS  Google Scholar 

  60. Tang H, Walker TG, Hopster H et al (1993) Anomalous behavior in the spin polarization of low-energy secondary electrons from Gd(0001). Phys Rev B 47:5047

    Article  CAS  Google Scholar 

  61. Li D, Pearson J, Bader SD et al (1996) Spin polarization of the conduction bands and secondary electrons of Gd(0001). J Appl Phys 79:5838–5840

    Article  CAS  Google Scholar 

  62. Hopster H, Raue R, Kisker E et al (1983) Evidence for spin-dependent electron-hole-pair excitations in spin-polarized secondary-electron emission from Ni(110). Phys Rev Lett 50:70

    Article  CAS  Google Scholar 

  63. Mauri D, Scholl D, Siegmann HC et al (1989) Magnetism in very thin films of permalloy measured by spin polarized cascade electrons. Appl Phys A 49:439–447

    Article  Google Scholar 

  64. Koike K, Hayakawa K (1984) Spin polarization of electron-excited secondary electrons from a permalloy polycrystal. Jpn J Appl Phys 23:L85

    Article  Google Scholar 

  65. Garay AS (1968) Origin and role of optical isomery in life. Nature 219:338–340

    Article  CAS  Google Scholar 

  66. Bonner WA (1974) Experiments on the origin of molecular chirality by parity non-conservation during β-decay. J Mol Evol 4:23–39

    Article  CAS  Google Scholar 

  67. Darge W, Laczko I, Thiemann W (1976) Stereoselectivity of [beta] irradiation of d,l-tryptophan in aqueous solution. Nature 261:522–524

    Article  CAS  Google Scholar 

  68. Blair NE, Bonner WA (1980) The radiolysis of tryptophan and leucine with 32P β-radiation. J Mol Evol 15:21–28

    Article  CAS  Google Scholar 

  69. Bernstein WJ, Lemmon RM, Calvin M (1972) In: Rolfing DL, Oparin AI (eds) Molecular evolution, prebiological and biological. Plenum, New York, pp 151–155

    Google Scholar 

  70. Bonner WA, Lemmon RM, Noyes HP (1978) Beta-radiolysis of crystalline carbon-14-labeled amino acids. J Org Chem 43:522–524

    Article  CAS  Google Scholar 

  71. Tokay R, Nordén B, Liljenzin J et al (1986) Was natural β radioactivity of carbon-14 the origin of optical one-handedness in life? J Radioanal Nucl Chem 104:337–347

    Article  CAS  Google Scholar 

  72. Kovacs KL (1979) On the physical origin of biological handedness. Orig Life Evol Biosph 9:219–233

    Article  CAS  Google Scholar 

  73. Kovács KL (1981) Beta irradiation may induce stereoselectivity in the crystallization of optical isomers. Orig Life Evol Biosph 11:37–52

    Article  Google Scholar 

  74. Kovacs KL, Garay AS (1975) Primordial origins of chirality. Nature 254:538–538

    Article  CAS  Google Scholar 

  75. Akaboshi M, Noda M, Kawai K et al (1979) Asymmetrical radical formation in d- and l-alanines irradiated with yttrium-90 β-rays. Orig Life Evol Biosph 9:181–186

    Article  CAS  Google Scholar 

  76. Conte E (1985) Investigation on the chirality of electrons from 90Sr-90Y beta-decay and their asymmetrical interactions with d-and l-alanines. Lettere Al Nuovo Cimento (1971–1985) 44:641–647

    Google Scholar 

  77. Conte E, Fanfani G, Pieralice M et al (1986) Investigation on the asymmetrical induced yields In90Sr-90y-beta-irradiated d- and l-alanines. Orig Life Evol Biosph 17:51–57

    Article  CAS  Google Scholar 

  78. Akaboshi M, Noda M, Kawai K et al (1982) Asymmetrical radical formation in d- and l-alanines irradiated with tritium-β-rays. Orig Life Evol Biosph 12:395–399

    Article  CAS  Google Scholar 

  79. Bonner WA, Dort MAV, Yearian MR (1975) Asymmetric degradation of d,l-leucine with longitudinally polarised electrons. Nature 258:419–421

    Article  CAS  Google Scholar 

  80. Keszthelyi L (1976) Asymmetric degradation of d,l-leucine with longitudinally polarised electrons. Nature 264:197

    Article  CAS  Google Scholar 

  81. Walker DC (1976) Polarized bremsstrahlung not the source of optical activity. Orig Life Evol Biosph 7:383–387

    Article  CAS  Google Scholar 

  82. Hodge LA, Dunning FB, Walters GK et al (1979) Degradation of d,l-leucine with longitudinally polarised electrons. Nature 280:250–252

    Article  CAS  Google Scholar 

  83. Bonner WA, Yearian MR, Dort MAV (1979) Degradation of d,l-leucine with longitudinally polarised electrons – reply. Nature 280:252

    Article  Google Scholar 

  84. Walker DC (1985) Leptons in chemistry. Acc Chem Res 18:167–173

    Article  CAS  Google Scholar 

  85. Farago PS (1980) Spin-dependent features of electron scattering from optically active molecules. J Phys B L567

    Google Scholar 

  86. Beerlage MJM, Farago PS, Wiel MJVd (1981) A search for spin effects in low-energy electron scattering from optically active camphor. J Phys B 3245

    Google Scholar 

  87. Rich A, Van House J, Hegstrom RA (1982) Calculation of a mirror asymmetric effect in electron scattering from chiral targets. Phys Rev Lett 48:1341

    Article  CAS  Google Scholar 

  88. Walker DW (1982) Electron scattering from optically active molecules. J Phys B 15:L289

    Article  CAS  Google Scholar 

  89. Campbell DM, Farago PS (1985) Spin-dependent electron scattering from optically active molecules. Nature 318:52–53

    Article  CAS  Google Scholar 

  90. Campbell DM, Farago PS (1987) Electron optic dichroism in camphor. J Phys B 20:5133

    Google Scholar 

  91. Hayashi S (1988) Asymmetry in elastic scattering of polarised electrons by optically active molecules. J Phys B 21:1037

    Google Scholar 

  92. Stephen TM, Shi X, Burrow PD (1988) Temporary negative-ion states of chiral molecules: camphor and 3-methylcyclopentanone. J Phys B 21:L169

    Article  CAS  Google Scholar 

  93. Blum K, Thompson D (1989) Spin-dependent electron scattering from oriented molecules. J Phys B 22:1823

    Google Scholar 

  94. Busalla A, Blum K, Thompson DG (1999) Differential cross section for collisions between electrons and oriented chiral molecules. Phys Rev Lett 83:1562

    Article  CAS  Google Scholar 

  95. Fandreyer R, Thompson D, Blum K (1990) Attenuation of longitudinally polarized electron beams by chiral molecules. J Phys B 23:3031

    Google Scholar 

  96. Musigmann M, Blum K, Thompson DG (2001) Scattering of polarized electrons from anisotropic chiral ensembles. J Phys B 34:2679

    Article  CAS  Google Scholar 

  97. Musigmann M, Busalla A, Blum K et al (1999) Asymmetries in collisions between electrons and oriented chiral molecules. J Phys B 32:4117

    Google Scholar 

  98. Smith IM, Thompson DG, Blum K (1998) Chiral effects in electron scattering by molecules using a continuum multiple scattering method. J Phys B 31:4029

    Google Scholar 

  99. Thompson DG (2004) Chiral effects in the ionization of chiral molecules by electron impact. J Phys B 37:1013

    Google Scholar 

  100. Blum K, Thompson DG (1997) Chiral effects in electron scattering by molecules. In: Bederson BWalther H (ed) Advances in atomic, molecular, and optical physics. Academic Press, San Diego, pp 39–86

    Google Scholar 

  101. Mayer S, Kessler J (1995) Experimental verification of electron optic dichroism. Phys Rev Lett 74:4803

    Article  CAS  Google Scholar 

  102. Mayer S, Nolting C, Kessler J (1996) Electron scattering from chiral molecules. J Phys B 29:3497

    Google Scholar 

  103. Scheer AM, Gallup GA, Gay TJ (2006) An investigation of electron helicity density in bromocamphor and dibromocamphor as a source of electron circular dichroism. J Phys B 39:2169

    Google Scholar 

  104. Carmeli I, Leitus G, Naaman R et al (2003) Magnetism induced by the organization of self-assembled monolayers. J Chem Phys 118:10372–10375

    Article  CAS  Google Scholar 

  105. Naaman R, Vager Z (2003) Electron transmission through organized organic thin films. Acc Chem Res 36:291–299

    Article  CAS  Google Scholar 

  106. Naaman R, Vager Z (2006) New electronic and magnetic properties emerging from adsorption of organized organic layers. Phys Chem Chem Phys 8:2217–2224

    Article  CAS  Google Scholar 

  107. Ray K, Ananthavel SP, Waldeck DH et al (1999) Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283:814–816

    Article  CAS  Google Scholar 

  108. Ray SG, Daube SS, Leitus G et al (2006) Chirality-induced spin-selective properties of self-assembled monolayers of DNA on gold. Phys Rev Lett 96:036101

    Article  CAS  Google Scholar 

  109. Skourtis SS, Beratan DN, Naaman R et al (2008) Chiral control of electron transmission through molecules. Phys Rev Lett 101:238103–238104

    Article  CAS  Google Scholar 

  110. Wei JJ, Schafmeister C, Bird G et al (2005) Molecular chirality and charge transfer through self-assembled scaffold monolayers. J Phys Chem B 110:1301–1308

    Article  CAS  Google Scholar 

  111. Rosenberg RA, Abu Haija M, Ryan PJ (2008) Chiral-selective chemistry induced by spin-polarized secondary electrons from a magnetic substrate. Phys Rev Lett 101:178301

    Article  CAS  Google Scholar 

  112. Rosenberg RA, Frigo SP (2002) Fundamental aspects of synchrotron radiation initiated surface chemistry. In: Sham TK (ed) Chemical applications of synchrotron radiation, part II: X-ray applications, vol 12A. World Scientific, Singapore, p 462

    Google Scholar 

  113. Cardonna M, Ley L (1978) Photoemission in solids. Springer, Berlin

    Book  Google Scholar 

  114. Hufner S (1996) Photoelectron spectroscopy: principles and applications. Springer, Berlin

    Google Scholar 

  115. Prince K (1998) Photoelectron spectroscopy of solids and surfaces. World Scientific, Singapore

    Google Scholar 

  116. Henke BL, Knauer JP, Premaratne K (1981) The characterization of X-ray photocathodes in the 0.1–10-kev photon energy region. J Appl Phys 52:1509–1520

    Article  CAS  Google Scholar 

  117. Arumainayagam CR, Lee H-L, Nelson RB et al (2010) Low-energy electron-induced reactions in condensed matter. Surf Sci Rep 65:1–44

    Google Scholar 

  118. Balog R, Langer J, Gohlke S et al (2004) Low energy electron driven reactions in free and bound molecules: from unimolecular processes in the gas phase to complex reactions in a condensed environment. Int J Mass Spectrom 233:267–291

    Article  CAS  Google Scholar 

  119. Sanche L (1990) Low-energy electron scattering from molecules on surfaces. J Phys B At Mol Opt Phys 23:1597

    Article  CAS  Google Scholar 

  120. Frigo SP (1994) The physical aspects of halosilane soft X-ray surface photochemistry. Ph.D. thesis (unpublished), University of Wisconsin, Madison

    Google Scholar 

  121. Lee I, Zaera F (2005) Enantioselectivity of adsorption sites created by chiral 2-butanol adsorbed on Pt(111) single-crystal surfaces. J Phys Chem B 109:12920–12926

    Article  CAS  Google Scholar 

  122. Stohr J (1999) Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMDC) spectroscopy. J Magn Magn Mater 200:470–497

    Article  CAS  Google Scholar 

  123. Chen DA, Friend CM (1996) Alcohol chemistry as a probe of mixed-metal phases: reactions of 2-propanol on cobalt-covered Mo(110). J Phys Chem 100:17640–17647

    Article  CAS  Google Scholar 

  124. Lepage M, Michaud M, Sanche L (2000) Low-energy electron scattering cross section for the production of CO within condensed acetone. J Chem Phys 113:3602–3608

    Article  CAS  Google Scholar 

  125. Lepage M, Michaud M, Sanche L (1997) Low energy electron total scattering cross section for the production of CO within condensed methanol. J Chem Phys 107:3478–3484

    Article  CAS  Google Scholar 

  126. Hegstrom RA (1982) β decay and the origins of biological chirality: theoretical results. Nature 297:643–647

    Article  CAS  Google Scholar 

  127. Mulligan A, Lane I, Rousseau GBD et al (2004) Chiral discrimination within disordered adlayers on metal surfaces. Chem Commun 21:2492–2493

    Article  CAS  Google Scholar 

  128. Garay AS, Czégé J, Tolvaj L et al (1973) Biological significance of molecular chirality in energy balance and metabolism. Acta Biotheor 22:34–43

    Article  CAS  Google Scholar 

  129. Yeganeh S, Ratner MA, Medina E et al (2009) Chiral electron transport: scattering through helical potentials. J Chem Phys 131:014707–014709

    Article  CAS  Google Scholar 

  130. Trenary M (2000) Reflection absorption infrared spectroscopy and the structure of molecular adsorbates on metal surfaces. Annu Rev Phys Chem 51:381–403

    Article  CAS  Google Scholar 

  131. Avouris P, Demuth J (1984) Electron energy loss spectroscopy in the study of surfaces. Annu Rev Phys Chem 35:49–73

    Article  CAS  Google Scholar 

  132. Schlichting H, Menzel D (1993) Techniques for wide range, high resolution and precision, thermal desorption measurements: I. Principles of apparatus and operation. Surf Sci 285:209–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Mohammed Abu Haija, Phil Ryan, and Sean Frigo for various contributions to this work. This work was performed at the Advanced Photon Source and was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Rosenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenberg, R.A. (2010). Spin-Polarized Electron Induced Asymmetric Reactions in Chiral Molecules. In: Naaman, R., Beratan, D., Waldeck, D. (eds) Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures. Topics in Current Chemistry, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/128_2010_81

Download citation

Publish with us

Policies and ethics