Skip to main content

Graph Theory for Rule-Based Modeling of Biochemical Networks

  • Conference paper
Transactions on Computational Systems Biology VII

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 4230))

Abstract

We introduce a graph-theoretic formalism suitable for modeling biochemical networks marked by combinatorial complexity, such as signal-transduction systems, in which protein-protein interactions play a prominent role. This development extends earlier work by allowing for explicit representation of the connectivity of a protein complex. Within the formalism, typed attributed graphs are used to represent proteins and their functional components, complexes, conformations, and states of post-translational covalent modification. Graph transformation rules are used to represent protein-protein interactions and their effects. Each rule defines a generalized reaction, i.e., a class of potential reactions that are logically consistent with knowledge or assumptions about the represented biomolecular interaction. A model is specified by defining 1) molecular-entity graphs, which delimit the molecular entities and material components of a system and their possible states, 2) graph transformation rules, and 3) a seed set of graphs representing chemical species, such as the initial species present before introduction of a signal. A reaction network is generated iteratively through application of the graph transformation rules. The rules are first applied to the seed graphs and then to any and all new graphs that subsequently arise as a result of graph transformation. This procedure continues until no new graphs are generated or a specified termination condition is satisfied. The formalism supports the generation of a list of reactions in a system, which can be used to derive different types of physicochemical models, which can be simulated and analyzed in different ways. The processes of generating and simulating the network may be combined so that species are generated only as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aladjem, M.I., Pasa, S., Parodi, S., Weinstein, J.N., Pommier, Y., Kohn, K.W.: Molecular interaction maps—a diagrammatic graphical language for bioregulatory networks. In: Sci. STKE 2004, p. 8 (2004)

    Google Scholar 

  2. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, S., Plump, D., Schurr, A., Taentzer, A.: Graph transformation for specification and programming. Sci. Comput. Program. 34, 1–54 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benkö, G., Flamm, C., Stadler, P.F.: A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43, 1085–1093 (2003)

    Google Scholar 

  4. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 3289–3291 (2004)

    Article  Google Scholar 

  5. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems (in press)

    Google Scholar 

  6. Borisov, N.M., Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys. J. 89, 951–966 (2005)

    Article  Google Scholar 

  7. Bray, D.: Molecular prodigality. Science 299, 1189–1190 (2003)

    Article  Google Scholar 

  8. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Bullinger, E., Allgower, F., Gilles, E.D.: Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. Syst. Biol. 1, 159–169 (2004)

    Article  Google Scholar 

  9. Danos, V., Laneve, C.: Graphs for core molecular biology. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 34–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325, 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dembo, M., Goldstein, B.: Theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody: application to histamine release from basophils. J. Immunol. 121, 345–353 (1978)

    Google Scholar 

  12. Efroni, S., Harel, D., Cohen, I.R.: Towards rigorous comprehension of biological complexity: modeling, execution and visualization of thymic T cell maturation. Genome Res. 13, 2485–2497 (2003)

    Article  Google Scholar 

  13. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation. Part II: single pushout approach and comparison with double pushout approach. In: Ehrig, H., Kreowski, H.-J., Montanari, U., Rozemberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, ch. 4, vol. 1, pp. 247–312. World Scientific, Singapore (1996)

    Google Scholar 

  14. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: symbolic analysis of biological signaling. In: Pac. Symp. Biocomput., pp. 400–412 (2002)

    Google Scholar 

  15. Endy, D., Brent, R.: Modelling cellular behaviour. Nature 409, 391–395 (2001)

    Article  Google Scholar 

  16. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of signal-transduction networks. In: Proc. ACM Symp. Appl. Computing, pp. 133–140 (2005)

    Google Scholar 

  17. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical networks. Complexity 10, 22–41 (2004)

    Article  Google Scholar 

  18. Faeder, J.R., Blinov, M.L., Goldstein, B., Hlavacek, W.S.: Combinatorial complexity and dynamical restriction of network flows in signal transduction. Syst. Biol. 2, 5–15 (2005)

    Article  Google Scholar 

  19. Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A., Wofsy, C., Goldstein, B.: Investigation of early events in FcεRI-mediated signaling using a detailed mathematical model. J. Immunol. 170, 3769–3781 (2003)

    Google Scholar 

  20. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. Biol. Phys. Chem. 4, 64–73 (2004)

    Article  Google Scholar 

  21. Faulon, J.-L.: Isomorphism, automorphism partitioning, and canonical labeling can be solved in polynomial-time for molecular graphs. J. Chem. Inf. Comput. Sci. 38, 432–444 (1998)

    Google Scholar 

  22. Finney, A.: Developing SBML beyond level 2: proposals for development. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 242–247. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  24. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  25. Goldstein, B., Faeder, J.R., Hlavacek, W.S., Blinov, M.L., Redondo, A., Wofsy, C.: Modeling the early signaling events mediated by FcεRI. Mol. Immunol. 38, 1213–1219 (2002)

    Article  Google Scholar 

  26. Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4, 445–456 (2004)

    Article  Google Scholar 

  27. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  28. Haugh, J.M., Schneider, I.C., Lewis, J.M.: On the cross-regulation of protein tyrosine phosphatases and receptor tyrosine kinases in intracellular signaling. J. Theor. Biol. 230, 119–132 (2004)

    Article  Google Scholar 

  29. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84, 783–794 (2003)

    Article  Google Scholar 

  30. Hucka, M., Finney, A., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)

    Article  Google Scholar 

  31. Hucka, M., Finney, A., et al.: Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst. Biol. 1, 41–53 (2004)

    Article  Google Scholar 

  32. Kitano, H.: A graphical notation for biochemical networks. BioSilico 1, 169–176 (2003)

    Article  Google Scholar 

  33. Klavins, E., Christ, R., Lipsky, D.: Graph grammars for self assembling robotic systems. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 5293–5300 (2004)

    Google Scholar 

  34. Kohn, K.W.: Molecular interaction maps as information organizers and simulation guides. Chaos 11, 84–97 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Le Novère, N., Shimizu, T.S.: STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17, 575–576 (2001)

    Article  Google Scholar 

  36. Li, Q., Dinner, A.R., Qi, S., Irvine, D.J., Huppa, J.B., Davis, M.M., Chakraborty, A.K.: CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat. Immunol. 5, 791–799 (2004)

    Article  Google Scholar 

  37. Lok, L., Brent, R.: Automatic generation of cellular reaction networks with Moleculizer 1.0. Nat. Biotechnol. 23, 131–136 (2005)

    Article  Google Scholar 

  38. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25, 42–65 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  39. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  Google Scholar 

  40. Morton-Firth, C.J., Bray, D.: Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192, 117–128 (1998)

    Article  Google Scholar 

  41. Pawson, T., Nash, P.: Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003)

    Article  Google Scholar 

  42. Peri, S., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res. 13, 2363–2371 (2003)

    Article  Google Scholar 

  43. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process Lett. 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Pac. Symp. Biocomput., pp. 459–470 (2001)

    Google Scholar 

  45. Rosello, R., Valiente, G.: Graph transformation in molecular biology. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 116–133. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  46. Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.: Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19, 677–678 (2003)

    Article  Google Scholar 

  47. Shimizu, T.S., Aksenov, S.V., Bray, D.: A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J. Mol. Biol. 329, 291–309 (2003)

    Article  Google Scholar 

  48. Talcott, C., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic modeling of protein functional domains in signal transduction. In: Pac. Symp. Biocomput., pp. 568–580 (2004)

    Google Scholar 

  49. Taentzer, G.: AGG: a graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  50. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23, 31–42 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S. (2006). Graph Theory for Rule-Based Modeling of Biochemical Networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds) Transactions on Computational Systems Biology VII. Lecture Notes in Computer Science(), vol 4230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11905455_5

Download citation

  • DOI: https://doi.org/10.1007/11905455_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48837-8

  • Online ISBN: 978-3-540-48839-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics