Skip to main content

Solvent Effects and Conformational Stability of a Tripeptide

  • Conference paper
Book cover Computational Life Sciences II (CompLife 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4216))

Included in the following conference series:

Abstract

In this work we are trying to gain an insight on the molecular mechanisms of the salt effects on conformational stability of proteins with use of fully atomistic Molecular Dynamics simulations techniques. Such ‘in silico’ approach allows us to obtain quite realistic data on the time and scale resolutions that are unavailable for both ‘in vitro’ and ‘in vivo’ experimental techniques. We investigated a trialanine peptide which is the one of the simplest examples of biomolecules, bearing the essential features of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marcus, Y.: Ion solvation. John Wiley and Sons Ltd., Chichester (1985)

    Google Scholar 

  2. Dogonadze, R.R., Kalman, A.K.E., Ulstrup, J. (eds.): The Chemical Physics of Solvation. Part A. Elsevier, Amsterdam (1985)

    Google Scholar 

  3. Dogonadze, R.R., Kalman, A.K.E., Ulstrup, J. (eds.): The Chemical Physics of Solvation. Part B. Elsevier, Amsterdam (1986)

    Google Scholar 

  4. Dogonadze, R., Kalman, E., Kornyshev, A., Ulstrup, J.: The Chemical Physics of Solvation. Part C. Elsevier, Amsterdam (1988)

    Google Scholar 

  5. Westhof, E. (ed.): Water and Biological Macromolecules. The Macmillan press Ltd., Basingstoke (1993)

    Google Scholar 

  6. Price, N.C., Dwek, R.A., Wormald, M., Ratcliffe, G.R.: Principles and problems in physical chemistry for biochemists. Oxford University Press, Oxford (2001)

    Google Scholar 

  7. Hirata, F. (ed.): Molecular theory of solvation. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  8. Goto, Y., Takahashi, N., Fink, A.L.: Mechanism of acid-induced folding of proteins. Biochemistry 29, 3480–3488 (1990)

    Article  Google Scholar 

  9. Goto, Y., Aimoto, S.: Anion and ph-dependent conformational transition of an amphiphilic polypeptide. Journal of Molecular Biology 218, 387–396 (1991)

    Article  Google Scholar 

  10. Goto, Y., Hagihara, Y.: Mechanism of the conformational transition of melittin. Biochemistry 31, 732–738 (1992)

    Article  Google Scholar 

  11. Cacace, M.G., Landau, E.M., Ramsden, J.J.: The hofmeister series: salt and solvent effects on interfacial phenomena. Quarterly Reviews of Biophysics 30, 241–277 (1997)

    Article  Google Scholar 

  12. Karlstrom, G.: On the effective interaction between an ion and a hydrophobic particle in polar solvents. a step towards an understanding of the hofmeister effect? Physical Chemistry Chemical Physics 5, 3238–3246 (2003)

    Article  Google Scholar 

  13. Rick, S.W.: A reoptimization of the five-site water potential (TIP5P) for use with ewald sums. Journal of Chemical Physics 120, 6085–6093 (2004)

    Article  Google Scholar 

  14. Berendsen, H.J.C., Van der Spoel, D., Van Drunen, R.: Gromacs: A message-passing parallel molecular-dynamics implementation. Computer Physics Communications 91, 43–56 (1995)

    Article  Google Scholar 

  15. Lindahl, E., Hess, B., van der Spoel, D.: Gromacs 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 7, 306–317 (2001)

    Google Scholar 

  16. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., Jorgensen, W.L.: Evaluation and reparametrization of the opls-aa force field for proteins via comparison with accurate quantum chemical calculations on peptides. Journal of Physical Chemistry B 105, 6474–6487 (2001)

    Article  Google Scholar 

  17. Mahoney, M.W., Jorgensen, W.L.: A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of Chemical Physics 112, 8910–8922 (2000)

    Article  Google Scholar 

  18. Schaftenaar, G., Noordik, J.H.: Molden: a pre- and post-processing program for molecular and electronic structures. Journal of Computer-Aided Molecular Design 14, 123–134 (2000)

    Article  Google Scholar 

  19. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R.: Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics 81, 3684–3690 (1984)

    Article  Google Scholar 

  20. Woutersen, S., Hamm, P.: Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy. Journal of Chemical Physics B 104, 11316–11320 (2000)

    Article  Google Scholar 

  21. Woutersen, S., Hamm, P.: Isotope-edited two-dimensional vibrational spectroscopy of trialanine in aqueous solution. Journal of Chemical Physics 114, 2727–2737 (2001)

    Article  Google Scholar 

  22. Schweitzer-Stenner, R., Eker, F., Huang, Q., Griebenow, K.: Dihedral angles of trialanine in d2o determined by combining ftir and polarized visible raman spectroscopy. Journal of the American Chemical Society 123, 9628–9633 (2001)

    Article  Google Scholar 

  23. Mu, Y.G., Kosov, D.S., Stock, G.: Conformational dynamics of trialanine in water. 2. comparison of amber, charmm, gromos, and opls force fields to nmr and infrared experiments. Journal of Chemical Physics B 107, 5064–5073 (2003)

    Article  Google Scholar 

  24. Lynden-Bell, R.M., Rasaiah, J.C.: From hydrophobic to hydrophilic behaviour: A simulation study of solvation entropy and free energy of simple solutes. Journal of Chemical Physics 107, 1981–1991 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fedorov, M.V., Schumm, S., Goodman, J.M. (2006). Solvent Effects and Conformational Stability of a Tripeptide. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds) Computational Life Sciences II. CompLife 2006. Lecture Notes in Computer Science(), vol 4216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875741_14

Download citation

  • DOI: https://doi.org/10.1007/11875741_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45767-1

  • Online ISBN: 978-3-540-45768-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics