Using Computational Intelligence and Parallelism to Solve an Industrial Design Problem

  • Fernando Asteasuain
  • Jessica A. Carballido
  • Gustavo E. Vazquez
  • Ignacio Ponzoni
Conference paper

DOI: 10.1007/11874850_23

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4140)
Cite this paper as:
Asteasuain F., Carballido J.A., Vazquez G.E., Ponzoni I. (2006) Using Computational Intelligence and Parallelism to Solve an Industrial Design Problem. In: Sichman J.S., Coelho H., Rezende S.O. (eds) Advances in Artificial Intelligence - IBERAMIA-SBIA 2006. Lecture Notes in Computer Science, vol 4140. Springer, Berlin, Heidelberg

Abstract

In this work we present a critical analysis of three novel parallel-distributed implementations of a multi-objective genetic algorithm (pdGAs) for instrumentation design applications. The pdGAs aim at establishing a sensible configuration of sensors for the initialization of instrumentation design studies of industrial processes. They were built on the basis of an evolutionary island model, the master-worker paradigm, and different migration and parameter control policies. The performance of the resulting implementations was assessed by testing algorithmic behavior on an industrial example that corresponds to an ammonia synthesis plant. The three pdGAs’ results were highly satisfactory in terms of speed-up, efficiency and instrumentation quality, thus revealing to constitute competitive tools with strong potential for their use in the industrial area. As well, from an overall point of view, the pdGA version with adaptive parameter control represents the best implementation’s alternative.

Keywords

Genetic Algorithms Distributed Computing Instrumentation Design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fernando Asteasuain
    • 1
  • Jessica A. Carballido
    • 1
  • Gustavo E. Vazquez
    • 1
  • Ignacio Ponzoni
    • 1
    • 2
  1. 1.Laboratorio de Investigación y Desarrollo en Computación Científica (LIDeCC), Departamento de Ciencias e Ingeniería de la ComputaciónUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Planta Piloto de Ingeniería Química – CONICET, Complejo CRIBABBBahía BlancaArgentina

Personalised recommendations