SD-Map – A Fast Algorithm for Exhaustive Subgroup Discovery

  • Martin Atzmueller
  • Frank Puppe
Conference paper

DOI: 10.1007/11871637_6

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4213)
Cite this paper as:
Atzmueller M., Puppe F. (2006) SD-Map – A Fast Algorithm for Exhaustive Subgroup Discovery. In: Fürnkranz J., Scheffer T., Spiliopoulou M. (eds) Knowledge Discovery in Databases: PKDD 2006. PKDD 2006. Lecture Notes in Computer Science, vol 4213. Springer, Berlin, Heidelberg

Abstract

In this paper we present the novel SD-Map algorithm for exhaustive but efficient subgroup discovery. SD-Map guarantees to identify all interesting subgroup patterns contained in a data set, in contrast to heuristic or sampling-based methods. The SD-Map algorithm utilizes the well-known FP-growth method for mining association rules with adaptations for the subgroup discovery task. We show how SD-Map can handle missing values, and provide an experimental evaluation of the performance of the algorithm using synthetic data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Atzmueller
    • 1
  • Frank Puppe
    • 1
  1. 1.Department of Computer ScienceUniversity of WürzburgWürzburgGermany

Personalised recommendations