Skip to main content

Computing a Family of Skeletons of Volumetric Models for Shape Description

  • Conference paper
Geometric Modeling and Processing - GMP 2006 (GMP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4077))

Included in the following conference series:

Abstract

Skeletons are important shape descriptors in object representation and recognition. Typically, skeletons of volumetric models are computed via an iterative thinning process. However, traditional thinning methods often generate skeletons with complex structures that are unsuitable for shape description, and appropriate pruning methods are lacking. In this paper, we present a new method for computing skeletons on volumes by alternating thinning and a novel skeleton pruning routine. Our method creates a family of skeletons parameterized by two user-specified numbers that determine respectively the size of curve and surface features on the skeleton. As demonstrated on both real-world models and medical images, our method generates skeletons with simple and meaningful structures that are particularly suitable for describing cylindrical and plate-like shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Forms, pp. 362–380. MIT Press, Amsterdam (1967)

    Google Scholar 

  2. Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992)

    Article  Google Scholar 

  3. Lee, T.-C., Kashyap, R.L., Chu, C.-N.: Building skeleton models via 3-d medial surface/axis thinning algorithms. CVGIP: Graph. Models Image Process. 56, 462–478 (1994)

    Article  Google Scholar 

  4. Saha, P.K., Chaudhuri, B.B.: Detection of 3-d simple points for topology preserving transformations with application to thinning. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1028–1032 (1994)

    Article  Google Scholar 

  5. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recogn. Lett. 15, 1003–1011 (1994)

    Article  Google Scholar 

  6. Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-d pictures. Comput. Graphics Image Process. 17, 315–331 (1981)

    Article  Google Scholar 

  7. Gong, W., Bertrand, G.: A simple parallel 3d thinning algorithm. In: ICPR 1990, pp. 188–190 (1990)

    Google Scholar 

  8. Bertrand, G., Aktouf, Z.: A 3d thinning algorithms using subfields. In: Proceedings, SPIE Conference on Vision Geometry III, vol. 2356, pp. 113–124 (1994)

    Google Scholar 

  9. Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recogn. Lett. 16, 979–986 (1995)

    Article  Google Scholar 

  10. Ma, C.M.: A 3d fully parallel thinning algorithm for generating medial faces. Pattern Recogn. Lett. 16, 83–87 (1995)

    Article  Google Scholar 

  11. Saito, T., Toriwaki, J.: A sequential thinning algorithm for three-dimensional digital pictures using the euclidean distance transformation. In: Proceedings of the 9th Scandinavian Conference on Image Analysis, pp. 507–516 (1995)

    Google Scholar 

  12. Palágyi, K., Kuba, A.: A parallel 3d 12-subiteration thinning algorithm. Graph. Models Image Process. 61, 199–221 (1999)

    Article  Google Scholar 

  13. Attali, D., Sanniti di Baja, G., Thiel, E.: Pruning discrete and semicontinuous skeletons. In: Braccini, C., Vernazza, G., DeFloriani, L. (eds.) ICIAP 1995. LNCS, vol. 974, pp. 488–493. Springer, Heidelberg (1995)

    Google Scholar 

  14. Shaked, D., Bruckstein, A.M.: Pruning medial axes. Comput. Vis. Image Underst. 69, 156–169 (1998)

    Article  Google Scholar 

  15. Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognition 28, 343–359 (1995)

    Article  Google Scholar 

  16. Attali, D., Montanvert, A.: Computing and simplifying 2d and 3d continuous skeletons. Comput. Vis. Image Underst. 67, 261–273 (1997)

    Article  Google Scholar 

  17. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: SMA 2001: Proceedings of the sixth ACM symposium on Solid modeling and applications, pp. 249–266. ACM Press, New York (2001)

    Chapter  Google Scholar 

  18. Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: SMA 2002: Proceedings of the seventh ACM symposium on Solid modeling and applications, pp. 356–366. ACM Press, New York (2002)

    Chapter  Google Scholar 

  19. Foskey, M., Lin, M.C., Manocha, D.: Efficient computation of a simplified medial axis. In: SM 2003: Proceedings of the eighth ACM symposium on Solid modeling and applications, pp. 96–107. ACM Press, New York (2003)

    Chapter  Google Scholar 

  20. Tam, R., Heidrich, W.: Shape simplification based on the medial axis transform. In: Proceedings of IEEE Visualization (2003)

    Google Scholar 

  21. Sud, A., Foskey, M., Manocha, D.: Homotopy-preserving medial axis simplification. In: SPM 2005: Proceedings of the 2005 ACM symposium on Solid and physical modeling, pp. 39–50. ACM Press, New York (2005)

    Chapter  Google Scholar 

  22. Mekada, Y., Toriwaki, J.: Anchor point thinning using a skeleton based on the euclidean distance transformation. In: ICPR 2002: Proceedings of the 16 th International Conference on Pattern Recognition (ICPR 2002), Washington, DC, USA, vol. 3, p. 30923. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  23. Svensson, S., Sanniti di Baja, G.: Simplifying curve skeletons in volume images. Comput. Vis. Image Underst. 90, 242–257 (2003)

    Article  MATH  Google Scholar 

  24. Saha, P., Gomberg, B., Wehrli, F.: Three-dimensional digital topological characterization of cancellous bone architecture. IJIST 11, 81–90 (2000)

    Google Scholar 

  25. Bonnassie, A., Peyrin, F., Attali, D.: Shape description of three-dimensional images based on medial axis. In: Proc. 10th Int. Conf. on Image Processing, Thessaloniki, Greece (2001)

    Google Scholar 

  26. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: SIGGRAPH 1987: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp. 163–169. ACM Press, New York (1987)

    Chapter  Google Scholar 

  27. Natarajan, B.K.: On generating topologically consistent isosurfaces from uniform samples. The Visual Computer 11, 52–62 (1994)

    Article  Google Scholar 

  28. Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23, 888–895 (2004)

    Article  Google Scholar 

  29. Chiu, W., Baker, M., Jiang, W., Zhou, Z.: Deriving the folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Curr. Opin. Struct. Biol. 2, 263–269 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ju, T., Baker, M.L., Chiu, W. (2006). Computing a Family of Skeletons of Volumetric Models for Shape Description. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_17

Download citation

  • DOI: https://doi.org/10.1007/11802914_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36711-6

  • Online ISBN: 978-3-540-36865-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics