Skip to main content

Turing Universality in Dynamical Systems

  • Conference paper
Logical Approaches to Computational Barriers (CiE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3988))

Included in the following conference series:

  • 995 Accesses

Abstract

A computer is classically formalized as a universal Turing machine. However over the years a lot of research has focused on the computational properties of dynamical systems other than Turing machines, such cellular automata, artificial neural networks, mirrors systems, etc.

In this talk we review some of the definitions that have been proposed for Turing universality of various systems, and the attempts to understand the relation between dynamical and computational properties of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asarin, E., Bouajjani, A.: Perturbed turing machines and hybrid systems. In: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS-2001), June 16–19, 2001, pp. 269–278. IEEE Computer Society Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  2. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science 138(1), 35–65 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21, 1–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bournez, O., Cosnard, M.: On the computational power of dynamical systems and hybrid systems. Theoretical Computer Science 168, 417–459 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davis, M.D.: A note on universal Turing machines. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 167–175. Princeton University Press, Princeton (1956)

    Google Scholar 

  6. Delvenne, J.-Ch., Kůrka, P., Blondel, V.D.: Computational universality in symbolic dynamical systems. Fundamenta Informaticae 71, 1–28 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Ser. A A400, 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gács, P.: Reliable cellular automata with self-organization. In: 38th Annual Symposium on Foundations of Computer Science, Miami Beach, Florida, October 20–22, pp. 90–99. IEEE, Los Alamitos (1997)

    Chapter  Google Scholar 

  9. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical systems. Theoretical Computer Science 132(1–2), 113–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theoretical Computer Science 210(1), 217–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Langton, C.G.: Computation at the edge of chaos. Physica. D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  12. Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog computations. Neural Computation 10(5), 1071–1095 (1998)

    Article  Google Scholar 

  13. Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Dynamic computation, and the “edge of chaos”: A re-examination. In: Cowan, G., Pines, D., Melzner, D. (eds.) Complexity: Metaphors, Models, and Reality. Santa Fe Institute Proceedings, vol. 19, pp. 497–513. Addison-Wesley, Reading (1994)

    Google Scholar 

  14. Moore, Cr.: Unpredictability and undecidability in dynamical systems. Physical Review Letters 64(20), 2354–2357 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moore, C.: Generalized shifts: Unpredictability and undecidability in dynamical systems. Nonlinearity 4, 199–230 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moore, C.: Dynamical recognizers: real-time language recognition by analog computers. Theoretical Computer Science 201, 99–136 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoretical Computer Science 162(1), 23–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ollinger, N.: The intrinsic universality problem of one-dimensional cellular automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 632–641. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Pour-El, M.B., Richards, J.I.: Computability and noncomputability in classical analysis. Transactions of the American Mathematical Society 275, 539–560 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. In: Progress in Theoretical Computer Science. Springer, Heidelberg (1999)

    Google Scholar 

  21. Sutner, K.: Almost periodic configurations on linear cellular automata. Fundamenta Informaticae 58(3–4), 223–240 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Koiran, P., Blondel, V., Bournez, O., Tsitsiklis, J.: The stability of saturated linear dynamical systems is undecidable. Journal of Computer and System Sciences 62, 442–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  24. Wolfram, S.: A new kind of science. Wolfram Media, Inc, Champaign, IL (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delvenne, JC. (2006). Turing Universality in Dynamical Systems. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds) Logical Approaches to Computational Barriers. CiE 2006. Lecture Notes in Computer Science, vol 3988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780342_16

Download citation

  • DOI: https://doi.org/10.1007/11780342_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35466-6

  • Online ISBN: 978-3-540-35468-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics