Skip to main content

Solution of the Boltzmann Equationfor Phonon Transport

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 107))

Abstract

We discuss two popular methods for solving the radiative transfer equation in the field of thermal radiation, which can be used to calculate conduction on nanoscales under certain hypotheses. After a brief summary of the theory leading to a radiative transfer equation for phonons, we present the P 1 method and the discrete ordinate method. The first is based on a global approach to transfer in which the only unknown is the local internal energy. In particular, it uses an approximate treatment of the boundary conditions and for this reason becomes somewhat inaccurate when transfer is dominated by ballistic phonons from the bounding surfaces. The second method takes into account the directional aspect of the transfer and yields better results than the P 1 method, except near the diffusive regime. It solves a transport equation in a discrete set of directions. Integrated quantities such as the internal energy and flux are evaluated using quadrature formulas. Whereas the partial differential equation derived in the P 1 approach can be solved by standard methods, the numerical system associated with the discrete ordinate method is more specific, particularly in cylindrical geometries.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. W. Ashcroft, N. D. Mermin: Solid State Physics (Harcourt College Publishers 1976)

    Google Scholar 

  • C. Kittel: Introduction to Solid State Physics (John Wiley, New York 1996)

    MATH  Google Scholar 

  • J. Ziman: Electrons and Phonons. The Theory of Transport Phenomena in Solids (Clarendon Press, Oxford 1960)

    MATH  Google Scholar 

  • G. P. Srivastava: The Physics of Phonons (Adam Hilger 1990)

    Google Scholar 

  • A. Majumdar: Microscale heat conduction in dielectric thin films, J. Heat Transf. 115, 7–16 (1993)

    Article  Google Scholar 

  • J. H. Jeans: The equation of radiative transfer of energy, Monthly Notices, Roy. Astronom. Soc. 78, 28–36 (1917)

    ADS  Google Scholar 

  • R. L. Murray: Nuclear Reactor Physics (Prentice Hall 1957)

    Google Scholar 

  • M. F. Modest: Radiative Heat Transfer, 2 ed. (Academic Press 2003)

    Google Scholar 

  • G. Chen: Ballistic-diffusive equations for transient heat conduction from nano to microscales, J. Heat Transf. 124, 320–328 (2002)

    Article  Google Scholar 

  • R. E. Marchak: Note on the spherical harmonic method as applied to the Milne problem for a sphere, Phys. Rev. 71, 443–446 (1947)

    Article  ADS  Google Scholar 

  • W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numerical Recipes in Fortran 77, 2 ed. (Cambridge University Press, Cambridge 1992)

    MATH  Google Scholar 

  • S. Chandrasekar: Radiative Transfer (Dover Publications, New York 1960)

    Google Scholar 

  • B. G. Carlson, K. D. Lathrop: Transport theory. The method of discrete ordinates, in H. Greenspan, C. V. N. Kelber, D. Okrent (Eds.): Computing Methods in Reactor Physics (Gordon and Breach 1968)

    Google Scholar 

  • W. A. Fiveland: A discrete ordinate method for predicting radiative heat transfer in axisymmetric enclosures, ASME Paper 82-HTD-20 (1982)

    Google Scholar 

  • W. A. Fiveland: Discrete ordinate solutions of the radiative transport equation for rectangular enclosures, J. Heat Transf. 106, 699–706 (1984)

    Article  Google Scholar 

  • W. A. Fiveland: Three-dimensional radiative heat transfer solutions by the discrete ordinate method, J. Thermophys. Heat Transfer 2, 309–316 (1988)

    Article  Google Scholar 

  • A. A. Joshi, A. Majumdar: Transient ballistic and diffusive phonon heat transport, Appl. Phys. 74, 31–39 (1993)

    Article  Google Scholar 

  • J. D. Chung, M. Kaviany: Effect of phonon pore scattering and pore randomness on effective conductivity of porous silicon, Int. J. Heat Mass Transf. 43, 521–538 (2000)

    Article  MATH  Google Scholar 

  • S. Volz, D. Lemonnier, J. B. Saulnier: Clamped nanowire thermal conductivity based on phonon transport equation, Microscale Thermophys. Eng. 5, 191–207 (2001)

    Article  Google Scholar 

  • D. Balsara: Fast and accurate discrete ordinate methods for multidimensional radiative transfer. Part I: Basic methods, J. Quant. Spectrosc. Rad. Transf. 69, 671–707 (2001)

    Article  ADS  Google Scholar 

  • R. Koch, R. Becker: Evaluation of quadrature schemes for the discrete ordinate method, J. Quant. Spectrosc. Rad. Transf. 84, 423–435 (2004)

    Article  ADS  Google Scholar 

  • K. D. Lathrop: Spatial differencing of the transport equation. Positivity versus accuracy, J. Comp. Phys. 4, 475–498 (1969)

    Article  MATH  ADS  Google Scholar 

  • S. Jendoubi, H. S. Lee, T. K. Kim: Discrete ordinate solutions for radiatively participating media in cylindrical enclosures, J. Thermophys. Heat Transfer 7, 213–219 (1993)

    Article  ADS  Google Scholar 

  • W. A. Fiveland: The selection of discrete ordinate quadrature sets for anisotropic scattering, ASME HTD 160, 89–96 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sebastian Volz

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Lemonnier, D. Solution of the Boltzmann Equationfor Phonon Transport. In: Volz, S. (eds) Microscale and Nanoscale Heat Transfer. Topics in Applied Physics, vol 107. Springer, Berlin, Heidelberg . https://doi.org/10.1007/11767862_5

Download citation

  • DOI: https://doi.org/10.1007/11767862_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36056-8

  • Online ISBN: 978-3-540-36057-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics