Trace Equivalence Characterization Through Reinforcement Learning

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In the context of probabilistic verification, we provide a new notion of trace-equivalence divergence between pairs of Labelled Markov processes. This divergence corresponds to the optimal value of a particular derived Markov Decision Process. It can therefore be estimated by Reinforcement Learning methods. Moreover, we provide some PAC-guarantees on this estimation.