On the Use of Variable Complementarity for Feature Selection in Cancer Classification

  • Patrick E. Meyer
  • Gianluca Bontempi
Conference paper

DOI: 10.1007/11732242_9

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)
Cite this paper as:
Meyer P.E., Bontempi G. (2006) On the Use of Variable Complementarity for Feature Selection in Cancer Classification. In: Rothlauf F. et al. (eds) Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg

Abstract

The paper presents an original filter approach for effective feature selection in classification tasks with a very large number of input variables. The approach is based on the use of a new information theoretic selection criterion: the double input symmetrical relevance (DISR). The rationale of the criterion is that a set of variables can return an information on the output class that is higher than the sum of the informations of each variable taken individually. This property will be made explicit by defining the measure of variable complementarity. A feature selection filter based on the DISR criterion is compared in theoretical and experimental terms to recently proposed information theoretic criteria. Experimental results on a set of eleven microarray classification tasks show that the proposed technique is competitive with existing filter selection methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patrick E. Meyer
    • 1
  • Gianluca Bontempi
    • 1
  1. 1.Université Libre de BruxellesBruxellesBelgique

Personalised recommendations