Skip to main content

Entanglement in Interactive Proof Systems with Binary Answers

  • Conference paper
STACS 2006 (STACS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3884))

Included in the following conference series:

Abstract

If two classical provers share an entangled state, the resulting interactive proof system is significantly weakened [6]. We show that for the case where the verifier computes the XOR of two binary answers, the resulting proof system is in fact no more powerful than a system based on a single quantum prover: \(\rm \bigoplus MIP^*[2] \subseteq QIP(2)\). This also implies that \(\rm \bigoplus MIP^*[2] \subseteq EXP\) which was previously shown using a different method [7]. This contrasts with an interactive proof system where the two provers do not share entanglement. In that case, \(\rm \bigoplus MIP[2] = NEXP\) for certain soundness and completeness parameters[6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L.: Trading group theory for randomness. In: Proceedings of 17th ACM STOC, pp. 421–429 (1985)

    Google Scholar 

  2. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1(1), 3–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi prover interactive proofs: How to remove intractability. In: Proceedings of 20th ACM STOC, pp. 113–131 (1988)

    Google Scholar 

  4. Cai, J., Condon, A., Lipton, R.: On bounded round multi-prover interactive proof systems. In: Proceedings of the Fifth Annual Conference on Structure in Complexity Theory, pp. 45–54 (1990)

    Google Scholar 

  5. Clauser, J., Horne, M., Shimony, A., Holt, R.: Proposed experiment to test local hidden-variable theories. Physical Review Letters 23, 880–884 (1969)

    Article  Google Scholar 

  6. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proceedings of 19th IEEE Conference on Computational Complexity, pp. 236–249, quant-ph/0404076 (2004)

    Google Scholar 

  7. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Presentation at 19th IEEE Conference on Computational Complexity (2004)

    Google Scholar 

  8. Feige, U.: On the success probability of two provers in one-round proof systems. In: Proceedings of the Sixth Annual Conference on Structure in Complexity Theory, pp. 116–123 (1991)

    Google Scholar 

  9. Feige, U.: Error reduction by parallel repetition - the state of the art. Technical Report CS95-32, Weizmann Institute, 1 (1995)

    Google Scholar 

  10. Feige, U., Lovász, L.: Two-prover one-round proof systems: their power and their problems. In: Proceedings of 24th ACM STOC, pp. 733–744 (1992)

    Google Scholar 

  11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 1(18), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kitaev, A., Watrous, J.: Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In: Proceedings of 32nd ACM STOC, pp. 608–617 (2000)

    Google Scholar 

  13. Kobayashi, H., Matsumoto, K.: Quantum Multi-Prover Interactive Proof Systems with Limited Prior Entanglement. J. of Computer and System Sciences 66(3), 429–450 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lapidot, D., Shamir, A.: Fully parallelized multi prover protocols for NEXP-time. In: Proceedings of 32nd FOCS, pp. 13–18 (1991)

    Google Scholar 

  15. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. cs.CC/0506068

    Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Foundations of Physics 24(3), 379–385 (1994)

    Article  MathSciNet  Google Scholar 

  18. Popescu, S., Rohrlich, D.: Nonlocality as an axiom for quantum theory. In: The dilemma of Einstein, Podolsky and Rosen, 60 years later: International symposium in honour of Nathan Rosen, quant-ph/9508009 (1996)

    Google Scholar 

  19. Popescu, S., Rohrlich, D.: Causality and nonlocality as axioms for quantum mechanics. In: Proceedings of the Symposium of Causality and Locality in Modern Physics and Astronomy: Open Questions and Possible Solutions, quant-ph/9709026 (1997)

    Google Scholar 

  20. Preda, D.: Non-local multi-prover interactive proofs. CWI Seminar (June 21, 2005)

    Google Scholar 

  21. Raz, R.: Quantum information and the PCP theorem. quant-ph/0504075. In: FOCS (to appear, 2005)

    Google Scholar 

  22. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)

    Article  MathSciNet  Google Scholar 

  23. Shen, A.: IP = PSPACE: simplified proof. Journal of the ACM 39(4), 878–880 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsirelson, B.: Quantum analogues of Bell inequalities: The case of two spatially separated domains. Journal of Soviet Mathematics 36, 557–570 (1987)

    Article  Google Scholar 

  25. Tsirelson, B.: Some results and problems on quantum Bell-type inequalities. Hadronic Journal Supplement 8(4), 329–345 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Cirel’son (Tsirelson), B.: Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics 4, 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  27. van Dam, W.: Nonlocality & Communication Complexity. PhD thesis, University of Oxford, Department of Physics (2000)

    Google Scholar 

  28. van Dam, W.: Impossible consequences of superstrong nonlocality. quant-ph/0501159 (2005)

    Google Scholar 

  29. Vyalyi, M.: QMA=PP implies that PP contains PH. Electronic Colloquium on Computational Complexity, TR03-021 (2003)

    Google Scholar 

  30. Watrous, J.: PSPACE has constant-round quantum interactive proof systems. In: Proceedings of 40th IEEE FOCS, pp. 112–119, cs.CC/9901015 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wehner, S. (2006). Entanglement in Interactive Proof Systems with Binary Answers. In: Durand, B., Thomas, W. (eds) STACS 2006. STACS 2006. Lecture Notes in Computer Science, vol 3884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11672142_12

Download citation

  • DOI: https://doi.org/10.1007/11672142_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32301-3

  • Online ISBN: 978-3-540-32288-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics