Using Relevance Feedback to Bridge the Semantic Gap

  • Ebroul Izquierdo
  • Divna Djordjevic
Conference paper

DOI: 10.1007/11670834_2

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3877)
Cite this paper as:
Izquierdo E., Djordjevic D. (2006) Using Relevance Feedback to Bridge the Semantic Gap. In: Detyniecki M., Jose J.M., Nürnberger A., van Rijsbergen C.J. (eds) Adaptive Multimedia Retrieval: User, Context, and Feedback. AMR 2005. Lecture Notes in Computer Science, vol 3877. Springer, Berlin, Heidelberg

Abstract

In this article relevant developments in relevance feedback based image annotation and retrieval are reported. A new approach to infer semantic concepts representing meaningful objects in images is also described. The proposed technique combines user relevance feedback and underlying low-level properties of elementary building blocks making up semantic objects in images. Images are regarded as mosaics made of small building blocks featuring good representations of colour, texture and edgeness. The approach is based on accurate classification of these building blocks. Once this has been achieved, a signature for the object of concern is built. It is expected that this signature features a high discrimination power and consequently it becomes very suitable to find other images containing the same semantic object. The model combines fuzzy clustering and relevance feedback in the training stage, and uses fuzzy support vector machines in the generalization stage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ebroul Izquierdo
    • 1
  • Divna Djordjevic
    • 1
  1. 1.Queen Mary University of LondonLondonUK

Personalised recommendations