Skip to main content

Electrochemical Glucose Biosensors for Diabetes Care

  • Chapter
  • First Online:
Trends in Bioelectroanalysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 6))

Abstract

Blood glucose monitoring (BGM) is the most successful application of electrochemical biosensor technology and has motivated tremendous improvements in biology, chemistry, measurement, and fabrication methods of biosensors. The performance of electrochemical biosensors used for BGM has improved greatly over the last four decades. Technological advance has allowed to measure blood glucose (BG) over a wide range of glucose concentration, a wide temperature and hematocrit range in the presence of an abundance of interfering substances with ever-increasing accuracy, and precision in minute sample volumes. The use of optimized enzymes, mediators, and electrochemical measurement methods enables this tremendous progress in performance. Continuous glucose monitoring (CGM) systems based on minimally invasive amperometric sensors, inserted into the subcutaneous tissue, have significantly improved over initial offerings over the last 15 years with regard to time of use, accuracy, reliability, and convenience due to a multitude of parallel advances: materials needed for enzyme immobilization, polymeric cover membranes, and biocompatible coatings needed to tackle the response by the complex body interface have been developed; wireless transfer and processing of unprecedented data volume have been established; effortless and painless insertion schemes of ever smaller sensors have been realized in order to overcome the concerns of persons with diabetes (PwDs) to use a minimally invasive sensor; and scalable manufacturing technologies of miniaturized minimally invasive sensors have allowed for ever improved reproducibility and increased production volume. Looking ahead, the demands on blood glucose system performance are expected to grow even as the pressures to lower the cost of systems increase. The drive for the future is to continue to push the limits on system performance under real-life conditions while lowering cost, all while finding ways to provide the best medical value to PwDs and healthcare providers. Technical issues of commercially available CGM sensors remain to be solved which currently impede reliable hypo- and hyperglycemic alarms, safe insulin dosing recommendations, or insulin pump control at any time of use. It is realistic to assume that continuous glucose monitoring (CGM) systems will be adopted in the future by a larger population of PwDs. Yet it is also clear that BGM systems will remain a major choice of the great majority of PwDs on a global scale. This review offers a technical overview about user, system, and major regulatory requirements and available suitable sensor technology and demonstrated performance of electrochemical BGM and CGM systems from an industrial R&D perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BGM:

Blood glucose monitoring

CGM:

Continuous glucose monitoring

FAD-GDH:

FAD-dependent glucose dehydrogenase

FBGC:

Foreign body giant cell

GOx:

Glucose oxidase

HCP:

Health care provider

ISF:

Interstitial fluid

MARD:

Mean absolute relative difference

PARD:

Precision absolute relative deviation difference

POC:

Point-of-care

PQQ-GDH:

Pyrroloquinoline quinone-dependent glucose dehydrogenase

PwD:

Person with diabetes

SMBG:

Self-monitoring of blood glucose

T1:

Type 1 diabetes

T2:

Type 2 diabetes

VEGF:

Vascular endothelial growth factor

References

  1. Grunberger G, Bailey T, Camacho P, Einhorn D, Garber AJ, Handelsman Y, Mack Harrell R, Lando HM, Law B, Leffert JD, Orzeck EA, Glucose Monitoring Consensus Conference Writing Committee (2015) Proceedings from the American association of clinical endocrinologists and American college of endocrinology consensus conference on glucose monitoring. Endocr Pract 21(5):522–533

    Article  Google Scholar 

  2. American Diabetes Association (2014) Standards of medical care in diabetes. Diabetes Care 37(Suppl 1):S14–S80

    Google Scholar 

  3. Yoo EH, Lee SY (2010) Glucose biosensors, an overview of use in clinical practice. Sensors 10(5):4558–4576

    Article  Google Scholar 

  4. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  5. Turner A (2013) Biosensors, sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  Google Scholar 

  6. UKPDS Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352(9131):837–853

    Article  Google Scholar 

  7. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

    Article  Google Scholar 

  8. Li R, Zhang P, Barker LE, Chowdhury FM, Zhang X (2010) Cost-effectiveness of interventions to prevent and control diabetes mellitus: a systematic review. Diabetes Care 33(8):1872–1894

    Article  Google Scholar 

  9. Miller KM, Beck RW, Bergenstal RM, Goland RS, Haller MJ, McGill JB, Rodriguez H, Simmons JH, Hirsch IB (2013) Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1C levels in T1D exchange clinical registry participants. Diabetes Care 36(7):2009–2014

    Article  Google Scholar 

  10. Ziegler R, Heidtmann B, Hilgard D, Hofer S, Rosenbauer J, Holl R (2011) Frequency of SMBG correlates with HbA1c and acute complications in children and adolescents with type 1 diabetes. Pediatr Diabetes 12(1):11–17

    Article  Google Scholar 

  11. Klonoff DC, Blonde L, Cembrowski G, Chacra AR, Charpentier G, Colagiuri S, Dailey G, Gabbay RA, Heinemann L, Kerr D, Nicolucci A, Polonsky W, Schnell O, Vigersky R, Yale JF (2011) Consensus report, the current role of self-monitoring of blood glucose in non-insulin-treated type 2 diabetes. J Diabetes Sci Technol 5(6):1529–1548

    Article  Google Scholar 

  12. American Diabetes Association, Standards of Medical Care in Diabetes (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90

    Google Scholar 

  13. Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM (2011) Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 57(6):e1–e47

    Article  Google Scholar 

  14. Food and Drug Administration Center for Drugs Evaluation and Research (2014) Blood glucose monitoring test systems for prescription point-of-care use, draft guidance for industry and food and drug administration staff. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM380325.pdf

  15. CLSI (2015) Glucose monitoring in settings without laboratory support. Clinical and Laboratory Standards Institute, Wayne, p 82

    Google Scholar 

  16. Food and Drug Administration Center for Drugs Evaluation Research (2014) Self-monitoring blood glucose test systems for over-the-counter use: Draft Guidance for Industry and Food and Drug Administration Staff Draft Guidance, FDA Maryland

    Google Scholar 

  17. ISO 15197:2013 In vitro diagnostic test systems—requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus

    Google Scholar 

  18. Fouretier A, Bertram D (2014) New regulations on medical devices in Europe, What to expect? Expert Rev Med Devices 11(4):351–359

    Article  CAS  Google Scholar 

  19. Jarow J, Baxley JH (2015) Medical devices, US medical device regulation. Urol Oncol Semin Orig Investig 33(3):128–132

    Article  Google Scholar 

  20. Jyothi G, Venkatesh M, Pramod Kumar T (2013) Regulations of medical devices in regulated countries: a comparative review. Ther Innov Regul Sci 47(5):581–592

    Article  Google Scholar 

  21. McCulloch P (2012) The EU’s system for regulating medical devices. BMJ 345:e71266

    Google Scholar 

  22. Tamura A, Kutsumi H (2014) Multiregional medical device development. Regulatory perspective Clin J Gastroenterol 7(2):108–116

    Article  Google Scholar 

  23. Code of Federal Regulations Title 21, Chapter I, Subchapter H, Part 820—PART 820—medical devices; quality system regulation. http://www.ecfr.gov/cgi-bin/text-idx?SID=4f03a00bda668d3977d1260056f8d423&mc=true&node=pt21.8.820&rgn=div5

  24. Friedman LM, Furberg CD, DeMets DL, Reboussin DM, Grange CB (2015) Fundamentals of clinical trials. Springer, Heidelberg, pp 519–538

    Book  Google Scholar 

  25. Code of Federal Regulations Title 21, Chapter I, Subchapter H, Part 806—medical devices; reports of corrections and removals. http://www.ecfr.gov/cgi-bin/text-idx?SID=4f03a00bda668d3977d1260056f8d423&mc=true&node=pt21.8.806&rgn=div5

  26. Code of Federal Regulations Title 21, Chapter I, Subchapter H, Part 803–medical devices; medical device reporting. http://www.ecfr.gov/cgi-bin/text-idx?SID=4f03a00bda668d3977d1260056f8d423&mc=true&node=pt21.8.803&rgn=div5

  27. Guidelines on a Medical Devices Vigilance System January 2013 MEDDEV 2.12-1 rev 8. http://ec.europa.eu/DocsRoom/documents/15506/attachments/1/translations/en/renditions/pdf

  28. Justiniano J, Gopalaswamy V (2003) Practical design control implementation for medical devices. CRC, Boca Raton

    Google Scholar 

  29. Fries RC (2012) Reliable design of medical devices. CRC, Boca Raton

    Book  Google Scholar 

  30. Burke DW (2014) Method for determining whether a disposable, dry regent, electrochemical test strip is unsuitable for use. US 8,859,293

    Google Scholar 

  31. Chua KS, Tan IK (1978) Plasma glucose measurement with the Yellow Springs Glucose Analyzer. Clin Chem 24(1):150–152

    CAS  Google Scholar 

  32. Rajendran R, Rayman G (2014) Point-of-care blood glucose testing for diabetes care in hospitalized patients: an evidence-based review. J Diabetes Sci Technol 8(6):1081–1090

    Article  Google Scholar 

  33. Heinemann L (2010) Quality of glucose measurement with blood glucose meters at the point-of-care: relevance of interfering factors. Diabetes Technol Ther 12(11):847–857

    Article  CAS  Google Scholar 

  34. Kiechle FL, Main RI (2000) Blood glucose: measurement in the Point-of-Care Setting. Lab Med 31(5):276–282

    Article  Google Scholar 

  35. Stepman HCM, Tiikkainen U, Stoeckl D, Vesper HW, Edwards SH, Laitinen H, Pelanti J, Thienpont LM (2014) Measurements for 8 common analytes in native sera identify inadequate standardization among 6 routine laboratory assays. Clin Chem 60(6):855–863

    Article  CAS  Google Scholar 

  36. Twomey PJ (2004) Plasma glucose measurement with the Yellow Springs Glucose 2300 STAT and the Olympus AU640. J Clin Pathol 57(7):752–754

    Article  CAS  Google Scholar 

  37. CLSI (2013) Point-of-Care blood glucose testing in acute and chronic care facilities 2013. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  38. American Association of Diabetes Educators AADE analysis on draft guidance for blood glucose monitoring systems, November 2014 http://www.diabeteseducator.org/export/sites/aade/_resources/Advocacy/FDA_BGM_GUIDANCE_COMMENTS_ANALYSIS_2014.pdf

  39. Klonoff DC (2014) Point-of-Care blood glucose meter accuracy in the hospital setting. Diabetes Spectr 27(3):174–179

    Article  Google Scholar 

  40. Tenderich A (2014) Glucose meter accuracy: FDA’s new dual call for tighter standards., http://www.healthline.com/diabetesmine/glucose-meter-accuracy-fdas-new-dual-call-for-tighter-standards#1

    Google Scholar 

  41. Hoskins M (2014) Unintended consequences of tighter glucose meter accuary…? Diabetes Mine., http://www.healthline.com/diabetesmine/unintended-consequences-of-meter-accuracy#1

    Google Scholar 

  42. Klonoff DC, Vigersky RA, Nichols JH, Rice MJ (2014) Timely hospital glucose measurement: here today, gone tomorrow? Mayo Clin Proc 89(10):331–1335

    Article  Google Scholar 

  43. Ferrante do Amaral CE, Wolf B (2008) Current development in non-invasive glucose monitoring. Med Eng Phys 30(5):541–549

    Google Scholar 

  44. Tura AA, Maran Pacini G (2007) Non-invasive glucose monitoring, assessment of technologies and devices according to quantitative criteria. Diabetes Res Clin Pract 77(1):16–40

    Article  CAS  Google Scholar 

  45. Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7–8):689–705

    Article  CAS  Google Scholar 

  46. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng C Mater Biol Appl 41:100–118

    Article  CAS  Google Scholar 

  47. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors, a perspective and an evaluation. Int J Electrochem Sci 5(9):1246–1301

    CAS  Google Scholar 

  48. Wang G, He X, Wang L, Gu A, Huang Y, Fang B (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3–4):161–186

    Article  CAS  Google Scholar 

  49. Egawa Y, Seki T, Takahashi S, Anzai J (2011) Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mat Sci Eng C 31(7):1257–1264

    Article  CAS  Google Scholar 

  50. Wu Q, Wang L, Yu H, Wang J, Chen Z (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875

    Article  CAS  Google Scholar 

  51. Andreis E, Küllmer K, Appel M (2014) Application of the reference method isotope dilution gas chromatography mass spectrometry (ID/GC/MS) to establish metrological traceability for calibration and control of blood glucose test systems. J Diabetes Sci Technol 8(3):508–515

    Article  CAS  Google Scholar 

  52. Clarke SF, Foster JR (2012) A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br J Biomed Sci J Diabetes Sci Technol 69(2):83–93

    CAS  Google Scholar 

  53. Dextrostix and Azostix (1968) Drug Ther Bull 6(25):97–99

    Google Scholar 

  54. Free AH, Ree AH, Adams EC, Kercher ML, Free HM, Cook MH (1957) Simple specific test for urine glucose. Clin Chem 3(3):163–168

    CAS  Google Scholar 

  55. McCall AL, Mullin CJ (1986) Home monitoring of diabetes mellitus-A quiet revolution. Clin Lab Med 6(2):215–239

    CAS  Google Scholar 

  56. Updike SJ, Hicks G (1967) The enzyme electrode. Nature 214(5092):986–988

    Article  CAS  Google Scholar 

  57. Updike SJ, Hicks G (1967) Reagentless substrate analysis with immobilized enzymes. Science 158(3798):270–272

    Article  CAS  Google Scholar 

  58. Wang HC, Lee AR (2015) Recent developments in blood glucose sensors. J Food Drug Anal 23(2):191–200

    Article  CAS  Google Scholar 

  59. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505

    Article  CAS  Google Scholar 

  60. Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43(7):963–973

    Article  CAS  Google Scholar 

  61. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Google Scholar 

  62. Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8(4):2043–2081

    Article  CAS  Google Scholar 

  63. Taguchi M, Ptitsyn A, McLamore ES, Claussen JC (2014) Nanomaterial-mediated biosensors for monitoring glucose. J Diabetes Sci Technol 8(2):403–411

    Article  CAS  Google Scholar 

  64. Mohd Yazid SNA, Md Isa I, Abu Bakara S, Hashim N, Ab Ghanic S (2014) A review of glucose biosensors based on graphene/metal oxide nanomaterials. Anal Lett 47(11):1821–1834

    Article  CAS  Google Scholar 

  65. Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3(14):4473–4491

    Article  CAS  Google Scholar 

  66. Vashist SK, Zheng D, A-Rubeaan K, Luong JH, Sheu FS (2011) Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta 703(2):124–136

    Article  CAS  Google Scholar 

  67. McGarraugh G (2009) The chemistry of commercial continuous glucose monitors. Diabetes Technol Ther 11(Suppl 1):S17–S24

    CAS  Google Scholar 

  68. Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F (2010) Technologies for continuous glucose monitoring, current problems and future promises. J Diabetes Sci Technol 4(6):1540–1562

    Article  Google Scholar 

  69. Gough DA, Lucisano JY, Tse HSM (1985) Two-dimensional enzyme electrode sensor for glucose. Anal Chem 57(12):2351–2357

    Google Scholar 

  70. Cass AE, Davis G, Francis GD, Hill HA, Aston WJ, Higgins IJ, Plotkin EV, Scott LD, Turner AP (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56(4):667–671

    Article  CAS  Google Scholar 

  71. Hoenes J, Mueller P, Surridge N (2008) The technology behind glucose meters, test strips. Diabetes Technol Ther 10(S1):S-10-S-26

    Google Scholar 

  72. Newman JD, Turner AF (2005) Home blood glucose biosensors, a commercial perspective. Biosens Bioelectron 20(12):2435–2453

    Article  CAS  Google Scholar 

  73. Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases, a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5(5):1068–1076

    Article  Google Scholar 

  74. Horaguchi Y, Saito S, Kojima K, Tsugawa W, Ferri S (2014) Engineering glucose oxidase to minimize the influence of oxygen on sensor response. Electrochim Acta 126:158–161

    Article  CAS  Google Scholar 

  75. Horaguchi Y, Saito S, Kojima K, Tsugawa W (2012) Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity. Int J Mol Sci 13(11):14149–14157

    Article  CAS  Google Scholar 

  76. Tanaka S, Igarashi S, Ferri S, Sode K (2005) Increasing stability of water-soluble PQQ glucose dehydrogenase by increasing hydrophobic interaction at dimeric interface. BMC Biochem 6:1–6

    Article  CAS  Google Scholar 

  77. Igarashi S, Okuda J, Ikebukuro K, Sode K (2004) Molecular engineering of PQQGDH and its applications. Arch Biochem Biophys 428(1):52–63

    Article  CAS  Google Scholar 

  78. Rahman MM, Ahammad AJ, Jin JH, Ahn SJ, Lee JJ (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10(5):4855–4886

    Article  CAS  Google Scholar 

  79. Phan THT, Tran PD, Pham XTT, Dang BTD, NguyenVL TVM, Bui TG, Dang MC, Tong DH (2013) Glucose biosensor based on platinum nanowires, a clinical study. Int J NanoTechnol 10(3–4):166–177

    Article  CAS  Google Scholar 

  80. Afreen S, Muthoosamy K, Manickam S, Hashim U (2015) Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens Bioelectron 63:354–364

    Article  CAS  Google Scholar 

  81. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials, carbon nanotubes and graphene. Sensors 12(5):5996–6022

    Article  Google Scholar 

  82. Kakehi N, Yamazaki T, Tsugawa W, Sode K (2007) A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. Biosens Bioelectron 22(9–10):2250–2255

    Article  CAS  Google Scholar 

  83. Yamazaki T, Okuda-Shimazaki J, Sakata C, Tsuya T, Sode K (2008) Construction and characterization of direct electron transfer-type continuous glucose monitoring system employing thermostable glucose dehydrogenase complex. Anal Lett 41(13):2363–2373

    Article  CAS  Google Scholar 

  84. Heller A (1992) Electrical connection of enzyme redox centers to electrodes. J Phys Chem 96(9):3579–3587

    Article  CAS  Google Scholar 

  85. Bergenstal RM, Gavin JR (2005) The role of self-monitoring of blood glucose in the care of people with diabetes: report of a global consensus conference. Am J Med 118(9):1–6

    Article  Google Scholar 

  86. Bismuth E, Laffel L (2007) Can we prevent diabetic ketoacidosis in children. Pediatr Diabetes 8(Suppl 6):24–33

    Article  Google Scholar 

  87. Boettcher C, Dost A, Wudy SA, Flechtner-Mors M, Borkenstein M, Schiel R, Weitzel D, Bechtold-Dalla Pozza S, Wolf J, Holl RW (2015) Accuracy of blood glucose meters for self-monitoring affects glucose control and hypoglycemia rate in children and adolescents with type 1 diabetes. Glucose self-monitoring in type 1 diabetes. Diabetes Diabetes Technol Ther 17(4):275–282

    Article  CAS  Google Scholar 

  88. Dailey G (2007) Assessing glycemic control with self-monitoring of blood glucose and hemoglobin A(1c) measurements. Mayo Clin Proc 82(2):229–236

    Article  CAS  Google Scholar 

  89. Garg SK (2008) Glucose monitoring, an important tool for improving glucose control and reducing hypoglycemia. Diabetes Technol Ther 10(S1):S-1-S-4

    Google Scholar 

  90. Hansen MV, Pedersen-Bjergaard U, Heller SR, Wallace TM, Rasmussen AK, Jørgensen HV, Pramming S, Thorsteinsson B (2009) Frequency and motives of blood glucose self-monitoring in type 1 diabetes. Diabetes Res Clin Pract 85(2):183–188

    Article  CAS  Google Scholar 

  91. Hirsch IB, Bode BW, Childs BP, Close KL, Fisher WA, Gavin JR, Ginsberg BH, Raine CH, Verderese CA (2008) Self-Monitoring of Blood Glucose (SMBG) in insulin- and non-insulin-using adults with diabetes, consensus recommendations for improving SMBG accuracy, utilization, and research. Diabetes Technol Ther 10(6):419–439

    Article  CAS  Google Scholar 

  92. Kolb H, Kempf K, Martin S, Stumvoll M, Landgraf R (2010) On what evidence-base do we recommend self-monitoring of blood glucose? Diabetes Res Clin Pract 87(2):150–156

    Article  Google Scholar 

  93. Nielsen JK, Christiansen JS (2008) Self-monitoring of blood glucose—epidemiological and practical aspects. Diabetes Technol Ther 10(s1):S-35-S-42

    Google Scholar 

  94. Renard E (2005) Monitoring glycemic control, the importance of self-monitoring of blood glucose. Am J Med 118(9):12–19

    Article  CAS  Google Scholar 

  95. Scaramuzza A, Cherubini V, Tumini S, Bonfanti R, Buono P, Cardella F, d’Annunzio G, Frongia AP, Lombardo F, Monciotti AC, Rabbone I, Schiaffini R, Toni S, Zucchini S, Frontino G, Iafusco D (2014) Recommendations for self-monitoring in pediatric diabetes: a consensus statement by the ISPED. Acta Diabetol 51(2):173–184

    Article  CAS  Google Scholar 

  96. Subramanian SL, Hirsch IB (2008) The utility and recent advances in self-monitoring of blood glucose in type 1 diabetes. Diabetes Technol Ther 10(s1):S-43-S-50

    Google Scholar 

  97. Boutati EI, Raptis SA (2009) Self-monitoring of blood glucose as part of the integral care of type 2 diabetes. Diabetes Care 32(Suppl 2):S205–S210

    Article  CAS  Google Scholar 

  98. Campbell JA, Walker RJ, Smalls BL, Egede LE (2012) Glucose control in diabetes: the impact of racial differences on monitoring and outcomes. Endocrine 42(3):471–482

    Article  CAS  Google Scholar 

  99. Molitch ME, Barr J, Callahan PL, Campbell RK, Delahanty LM, Rizza R, Tobin CT, Young DS (1996) Self-monitoring of blood glucose. Diabetes Care 19(Suppl 1):S62–S66

    Google Scholar 

  100. Montagnana M, Caputo M, Giavarina D, Lippi G (2009) Overview on self-monitoring of blood glucose. Clin Chim Acta 402(1–2):7–13

    Article  CAS  Google Scholar 

  101. Naik RG, Ellis SL (2008) Self-monitoring of blood glucose in insulin-requiring type 2 diabetes. Diabetes Technol Ther 10(s1):S-67-S-71

    Google Scholar 

  102. Allemann S, Houriet C, Diem P, Stettler C (2009) Self-monitoring of blood glucose in non-insulin treated patients with type 2 diabetes, a systematic review and meta-analysis. Curr Med Res Opin 25(12):2903–2913

    Article  CAS  Google Scholar 

  103. Bosi E, Scavini M, Ceriello A, Cucinotta D, Tiengo A, Marino R, Bonizzoni E, Giorgino F (2013) Intensive structured self-monitoring of blood glucose and glycemic control in noninsulin-treated type 2 diabetes: the PRISMA randomized trial. Diabetes Care 36:2887–2894

    Article  CAS  Google Scholar 

  104. Bosi, E et al (2013) Response to comment on: Bosi et al. Intensive structured self-monitoring of blood glucose and glycemic control in noninsulin-treated type 2 diabetes: the PRISMA randomized trial. Diabetes Care (36):2887–2894; Diabetes Care (36):e218

    Google Scholar 

  105. Gerich JE, Odawara M, Terauchi Y (2007) The rationale for paired pre- and postprandial self-monitoring of blood glucose: the role of glycemic variability in micro- and macrovascular risk. Curr Med Res Opin 23(8):1791–1798

    Article  CAS  Google Scholar 

  106. Ipp E, Aquino RL, Christenson P (2005) Point: self-monitoring of blood glucose in type 2 diabetic patients not receiving insulin: the sanguine approach. Diabetes Care 28(6):1528–1530

    Article  Google Scholar 

  107. Klonoff DC, Blonde L, Cembrowski G, Chacra AR, Charpentier G, Colagiuri S, Dailey G, Gabbay RA, Heinemann L, Kerr D, Nicolucci A, Polonsky W, Schnell O, Vigersky R, Yale JF (2011) Consensus report: the current role of self-monitoring of blood glucose in non-insulin-treated type 2 diabetes. J Diabetes Sci Technol 5(6):1534–1548

    Google Scholar 

  108. McGeoch G, Derry S, Moore RA (2007) Self-monitoring of blood glucose in type-2 diabetes: what is the evidence? Diabetes Metab Res Rev 23(6):423–440

    Article  CAS  Google Scholar 

  109. Murata GH, Duckworth WC, Hoffman RM, Wendel CS, Mohler MJ, Shah JH (2004) Hypoglycemia in type 2 diabetes: a critical review. Biomed Pharmacother 58(10):551–559

    Article  CAS  Google Scholar 

  110. Parkin CG, Hinnen D, Campbell RK, Geil P, Tetrick DL, Polonsky WH (2009) Effective use of paired testing in type 2 diabetes: practical applications in clinical practice. Diabetes Educ 35(6):915–927

    Article  Google Scholar 

  111. Pettus J, Stenger P, Schachner HC, Dunne N, Parkes JL, Pardo S, Edelman SV (2014) Testing versus guessing blood glucose values: impact on self-care behaviors in type 2 diabetes. Curr Med Res Opin 30(9):1795–1802

    Article  CAS  Google Scholar 

  112. Polonsky WH, Fisher L, Hessler D, Edelman SV (2014) What is so tough about self-monitoring of blood glucose? Perceived obstacles among patients with Type 2 diabetes. Diabet Med 31(1):40–46

    Article  CAS  Google Scholar 

  113. Ruiz Gracia T, García de la Torre Lobo N, Durán Rodríguez Hervada A, Calle Pascual AL (2014) Structured SMBG in early management of T2DM: contributions from the St Carlos study. World J Diabetes 5(4):471–481

    Google Scholar 

  114. Szymborska-Kajanek A, Psurek A, Hese R, Strojek K (2009) Self-monitoring of blood glucose in treatment of type 2 diabetes. Diabetes Res Clin Pract 86S:S49–S52

    Article  CAS  Google Scholar 

  115. Charny M (2014) Reimbursement unravelled: why blood glucose monitoring products are reimbursement anomalies. Clinica Medtech Intelligence 1–2

    Google Scholar 

  116. Davidson MB (2005) Counterpoint: self-monitoring of blood glucose in type 2 diabetes patients not receiving insulin: a waste of money. Diabetes Care 28(6):1531–1533

    Google Scholar 

  117. Goyder E (2008) Should we stop patients with non-insulin treated diabetes using self monitoring of blood glucose? The implications of the Diabetes Glycaemic Education and Monitoring (DiGEM) trial. Prim Care Diabetes 2(2):91–93

    Article  Google Scholar 

  118. Varanauskiene E (2008) Can blood glucose self-monitoring improve treatment outcomes in type 2 diabetes? Diabetes Res Clin Pract 82(Suppl 2):S112–S117

    Article  Google Scholar 

  119. Welschen LM, Bloemendal E, Nijpels G, Dekker JM, Heine RJ, Stalman WA, Bouter LM (2005) Self-monitoring of blood glucose in patients with type 2 diabetes who are not using insulin. Diabetes Care 28(6):1510–1517

    Article  Google Scholar 

  120. Gomes T, Juurlink DN, Shah BR, Paterson JM, Mamdani MM (2010) Blood glucose test strips: options to reduce usage. CMAJ 182(1):35–38

    Article  Google Scholar 

  121. American Diabetes Association (2013) Economic costs of diabetes in the US in 2012. Diabetes Care 36:1033–1046

    Article  Google Scholar 

  122. Hughes MD (2009) The business of self-monitoring of blood glucose: a market profile. J Diabetes Sci Technol 3(5):1219–1223

    Article  Google Scholar 

  123. Heinemann L, Klonoff DC (2013) Blood glucose meter market: this world is undergoing drastic changes. J Diabetes Sci Technol 7(3):584–586

    Article  Google Scholar 

  124. American Diabetes Association (2014) Third-party reimbursement for diabetes care, self-management education, and supplies. Diabetes Care 37(Suppl 1):S118–S119

    Article  Google Scholar 

  125. Kesavadev J, Sadikot S, Wangnoo S, Kannampilly J, Saboo B, Aravind SR, Kalra S, Makkar BM, Maji D, Saikia M, Anjana RM, Rajput R, Singh SK, Shah S, Dhruv U, Vishwanathan V (2014) Consensus guidelines for glycemic monitoring in type 1/type 2 & GDM. Diabetes Metab Syndr 8(3):187–195

    Article  Google Scholar 

  126. Clar C, Barnard KD, Cummins E, Royle P, Waugh N (2010) Self-monitoring of blood glucose in type 2 diabetes: systematic review. Health Technol Assessment 14(12):1–140

    Article  CAS  Google Scholar 

  127. Polonsky WH, Fisher L, Schikman CH, Hinnen DA, Parkin CG, Jelsovsky Z, Petersen P, Schweitzer M, Wagner RS (2011) Structured self-monitoring of blood glucose significantly reduces A1C levels in poorly controlled, noninsulin-treated type 2 diabetes – Results from the Structured Testing Program study. Diabetes Care 34(2):262–267

    Article  Google Scholar 

  128. Franciosi M, Lucisano G, Pellegrini F, Cantarello A, Consoli A, Cucco L, Ghidelli R, Sartore G, Sciangula L, Nicolucci A, ROSES Study Group (2011) ROSES: role of self-monitoring of blood glucose and intensive education in patients with Type 2 diabetes not receiving insulin. A pilot randomized clinical trial. Diabet Med 28(7):789–796

    Article  CAS  Google Scholar 

  129. Tunis SL (2011) Cost effectiveness of self-monitoring of blood glucose (SMBG) for patients with type 2 diabetes and not on insulin: impact of modelling assumptions on recent Canadian findings. Appl Health Econ Health Policy 9(6):351–365

    Article  Google Scholar 

  130. European Diagnostic Manufacturers Association (2014) Position Paper 27. Health Technology Assessment for IVDs in the context of market access http://www.medtecheurope.org/sites/default/files/2014_10_29_HTA_for_IVDs_in_the_Context_of_Market_Access_PP_PUB%5B1%5D.pdf

  131. Moodley N, Ngxamngxa U, Turzyniecka MJ, Pillay TS (2015) Historical perspectives in clinical pathology: a history of glucose measurement. J Clin Pathol 68(4):258–264

    Article  CAS  Google Scholar 

  132. Roche Diagnostics (2011) Compendium of urinalysis—urine test strips and microscopy. http://www.roche-diagnostics.ch/content/dam/corporate/roche-dia_ch/documents/broschueren/professional_diagnostics/urindiagnostik/12254620001_EN_EA_Compendium-of-urinanalysis_Brosch%C3%BCre_EN.pdf

  133. International Diabetes Federation Guideline Development Group (2014) Global guideline for type 2 diabetes. Diabetes Res Clin Pract 104(1):1–52

    Article  Google Scholar 

  134. myDr. (2009) Diabetes and urine glucose monitoring. Cirrus Media Pty, Ltd. http://www.mydr.com.au/tests-investigations/diabetes-and-urine-glucose-monitoring

  135. Diabetes Forecast Consumer Guide (2015) http://www.diabetesforecast.org/2015/mar-apr/consumer-guide-2015.html

  136. Diabetes Forecast (2015) Diabetes devices: what matters most to users. http://www.diabetesforecast.org/2015/mar-apr/diabetes-devices-what-matters-most.html

  137. Ginsberg BH (2009) Factors affecting blood glucose monitoring: sources of errors in measurement. J Diabetes Sci Technol 3(4):903–913

    Article  Google Scholar 

  138. Raine CH, Schrock LE, Edelman SV, Mudaliar SR, Zhong W, Proud LJ, Parkes JL (2007) Significant insulin dose errors may occur if blood glucose results are obtained from miscoded meters. J Diabetes Sci Technol 1(2):205–210

    Article  Google Scholar 

  139. Kristensen GB, Sandberg S (2010) Self-monitoring of blood glucose with a focus on analytical quality: an overview. Clin Chem Lab Med 48(7):963–972

    Article  CAS  Google Scholar 

  140. Freckmann G, Schmid C, Ruhland K, Baumstark A, Haug C (2012) Integrated self-monitoring of blood glucose system: handling step analysis. J Diabetes Sci Technol 6(4):938–946

    Article  Google Scholar 

  141. Bergenstal R, Pearson J, Cembrowski GS, Bina D, Davidson J, List S (2000) Identifying variables associated with inaccurate self-monitoring of blood glucose: proposed guidelines to improve accuracy. Diabetes Educ 26(6):981–989

    Article  CAS  Google Scholar 

  142. Colin IM, Paris I (2013) Glucose meters with built-in automated bolus calculator: gadget or real value for insulin-treated diabetic patients? Diabetes Ther 4(1):1–11

    Article  CAS  Google Scholar 

  143. Barnard K, Parkin C, Young A, Ashraf M (2012) Use of an automated bolus calculator reduces fear of hypoglycemia and improves confidence in dosage accuracy in patients with type 1 diabetes mellitus treated with multiple daily insulin injections. J Diabetes Sci Technol 6(1):144–149

    Article  Google Scholar 

  144. Ziegler R, Cavan DA, Cranston I, Barnard K, Ryder J, Vogel C, Parkin CG, Koehler W, Vesper I, Petersen B, Schweitzer MA, Wagner RS (2013) Use of an insulin bolus advisor improves glycemic control in multiple daily insulin injection (MDI) therapy patients with suboptimal glycemic control: first results from the ABACUS trial. Diabetes Care 36(11):3613–3619

    Article  CAS  Google Scholar 

  145. Ziegler R, Rees C, Jacobs N, Parkin CG, Lyden MR, Petersen B, Wagner RS (2015) Frequent use of an automated bolus advisor improves glycemic control in pediatric patients treated with insulin pump therapy: results of the Bolus Advisor Benefit Evaluation (BABE) study. Pediatr Diabetes. doi:10.1111/pedi.12290 [Epub ahead of print]

    Google Scholar 

  146. Hinnen DA, Buskirk A, Lyden M, Amstutz L, Hunter T, Parkin CG, Wagner R (2015) Use of diabetes data management software reports by health care providers, patients with diabetes, and caregivers improves accuracy and efficiency of data analysis and interpretation compared with traditional logbook data: first results of the Accu-Chek Connect Reports Utility and Efficiency Study (ACCRUES). J Diabetes Sci Technol 9(2):293–301

    Article  Google Scholar 

  147. List SM, Starks N, Baum J, Greene C, Pardo S, Parkes JL, Schachner HC, Cuddihy R (2011) Performance evaluation and labeling comprehension of a new blood glucose monitoring system with integrated information management. J Diabetes Sci Technol 5(5):1144–1553

    Article  Google Scholar 

  148. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev 2:683–693

    Article  CAS  Google Scholar 

  149. Boren SA, Clarke WL (2010) Analytical and clinical performance of blood glucose monitors. J Diabetes Sci Technol 4(1):84–97

    Article  Google Scholar 

  150. Schleis, MS (2007) Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems. Pharmacotherapy 27(9):1313–1321

    Google Scholar 

  151. Yoshida H, Iguchi T, Sode K (2000) Construction of multi-chimeric pyrroloquinoline quinone glucose dehydrogenase with improved enzymatic properties and application in glucose monitoring. Biotechnol Lett 22(18):1505–1510

    Article  CAS  Google Scholar 

  152. Dimeski G, Jones BW, Tilley V, Greenslade MN, Russell AW (2010) Glucose meters: evaluation of the new formulation measuring strips from Roche (Accu-Chek) and Abbott (MediSense). Ann Clin Biochem 47(Pt 4):358–365

    Article  CAS  Google Scholar 

  153. Kelly BN, Haverstick DM, Bruns DE (2012) Interference in a glucose dehydrogenase-based glucose meter revisited. Clin Chim Acta 413(7–8):829–830

    Article  CAS  Google Scholar 

  154. Ng WY, Tiong CC, Jacob E (2010) Maltose interference-free test strips for blood glucose testing at point-of-care: a laboratory performance evaluation. Diabetes Technol Ther 12(11):889–893

    Article  Google Scholar 

  155. Hamamatsu N, Suzumura A, Nomiya Y, Sato M, Aita T, Nakajima M, Husimi Y, Shibanaka Y (2006) Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution. Appl Microbiol Biotechnol 73(3):607–617

    Article  CAS  Google Scholar 

  156. Boenitz-Dulat M, Beck D, Kratzsch P, Schmuck R, Von Der Eltz H (2007) Improved mutants of Acinetobacter calcoaceticus pyrroloquinoline quinone-dependent soluble glucose dehydrogenase and their use for detection of glucose. WO 2007118647A1

    Google Scholar 

  157. Boenitz-Dulat M (2009) Mutants of pyrroloquinoline quinone dependent soluble glucose dehydrogenase. US 20090148874A1

    Google Scholar 

  158. Boenitz-Dulat M, Kratzsch P, Schmuck R (2010) Thermostabile mutants of pyrroloquinoline quinone dependent glucose dehydrogenase. US 7,781,196

    Google Scholar 

  159. Moiroux J, Elving PJ (1979) Adsorption phenomena in the NAD+/NADH system at glassy carbon electrodes. J Electroanal Chem 102:93–108

    Article  CAS  Google Scholar 

  160. Moiroux J, Elving PJ (1980) Adsorption phenomena in the NAD+/NADH oxidation of dihydronicotinamide adenine dinucleotide (NADH). J Am Chem Soc 102:6533–6538

    Article  CAS  Google Scholar 

  161. Nowall WB, Kuhr WG (1995) Adsorption phenomena in the NAD+/NADH of NADH and other anionic molecules of biological significance. Anal Chem 67(19):3583–3588

    Article  CAS  Google Scholar 

  162. Gorton L, Domínguez E (2000) Adsorption phenomena in the NAD+/NADH-modified electrodes. Rev Mol BioTechnol 82:371–392

    Article  Google Scholar 

  163. Prieto-Simon B, Fabregas E (2004) Comparative study of electron mediators used in the electrochemical oxidation of NADH. Biosens Bioelectron 19(10):1131–1138

    Article  CAS  Google Scholar 

  164. Beaty TA, Kuhn LS, Svetnik V, Burke DW (2003) Meter and method of using the meter for determining the concentration of a component of a fluid. US 6,645,368

    Google Scholar 

  165. Burke DW, Surridge NA, Groll H (2014) System and method for analyte measurement. US 8,663,442

    Google Scholar 

  166. Musholt PB, Schipper C, Thomé N, Ramljak S, Schmidt M, Forst T, Pfützner A (2011) Dynamic electrochemistry corrects for hematocrit interference on blood glucose determinations with patient self-measurement devices. J Diabetes Sci Technol 5(5):1167–1175

    Article  Google Scholar 

  167. Pfuetzner A, Schipper C, Ramljak S, Flacke F, Sieber J, Forst T, Musholt PB (2013) Determination of hematocrit interference in blood samples derived from patients with different blood glucose concentrations. J Diabetes Sci Technol 7(1):170–178

    Article  Google Scholar 

  168. Conductive Technologies I, electrochemical sensors. Product brochure. http://www.conductivetech.com/wp-content/uploads/2015/03/CTI-Electrochemical-Sesnors.pdf

  169. BI Technologies L Thick film electrodes for sensors. Product brochure. http://www.bitechnologies.com/pdfs/thickfilmelectrodesforsensors.pdf

  170. Bhullar RS, Diebold ER, Hill BS, Surridge NA, Walling DP (2006) Method of making a biosensor US 7,073,246

    Google Scholar 

  171. Bhullar R, Diebold ER, Hill BS, Surridge N, Walling PD (2013) Biosensor and method of making. US 8,551,308

    Google Scholar 

  172. Turner APF, Chen B, Piletsky SA (1999) In vitro diagnostics in diabetes: meeting the challenge. Clin Chem 45(9):1596–1601

    CAS  Google Scholar 

  173. Burke DW, Marquant M, Zapf U, Fritz M, Mosoiu D, Wilsey C (2011) Reagent stripe for test strip US 7,892,849B2

    Google Scholar 

  174. Mosoiu D, Wilsey CD (2009) Method and reagent for producing narrow, homogeneous reagent stripes US 20090162532A1

    Google Scholar 

  175. Medical Device Directive 98/79/EC (1998) In vitro diagnostic medical devices. http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/iv-diagnostic-medical-devices/index_en.htm

  176. D’Orazio PD, Burnett RW, Fogh-Andersen N, Jacobs E, Kuwa K, Külpmann WR, Larsson L, Lewenstam A, Maas AHJ, Mager G, Naskalski JW, Okorodudu AO (2006) Approved IFCC recommendation on reporting results for blood glucose. Clin Chem Lab Med 44(12):1486–1490

    Google Scholar 

  177. Chen Y, Liu Q, Yong S, Lee TK (2012) High accuracy analysis of glucose in human serum by isotope dilution liquid chromatography-tandem mass spectrometry. Clin Chim Acta 413(7–8):808–813

    Article  CAS  Google Scholar 

  178. Prendergast JL, Sniegoski LT, Welch MJ, Phinney KW (2010) Modifications to the NIST reference measurement procedure (RMP) for the determination of serum glucose by isotope dilution gas chromatography/mass spectrometry. Anal Bioanal Chem 397(5):1779–1785

    Article  CAS  Google Scholar 

  179. Freckmann G, Schmid C, Baumstark A, Pleus S, Link M, Haug C (2013) In response to Teodorczyk and coauthors: system accuracy of blood glucose monitoring devices according to the current and proposed ISO 15197 standards. J Diabetes Sci Technol 7(6):1659–1660

    Article  Google Scholar 

  180. Genter PM, Ipp E (1994) Accuracy of plasma glucose measurements in the hypoglycemic range. Diabetes Care 17(6):595–598

    Article  CAS  Google Scholar 

  181. Schnell O, Hinzmann R, Kulzer B, Freckmann G, Erbach M, Lodwig V, Heinemann L (2013) Assessing the analytical performance of systems for self-monitoring of blood glucose: concepts of performance evaluation and definition of metrological key terms. J Diabetes Sci Technol 7(6):1585–1594

    Article  Google Scholar 

  182. Freckmann G, Schmid C, Baumstark A, Rutschmann M, Haug C, Heinemann L (2015) Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy: relevant differences among ISO 15197:2003, ISO 15197:2013, and current FDA recommendations. J Diabetes Sci Technol. Epub 2015 Apr 14

    Google Scholar 

  183. Clarke WL, Cox D, Gonder-Frederick LA, Carter W, Pohl SL (1987) Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care 10(5):622–628

    Article  CAS  Google Scholar 

  184. Parkes JL, Slatin SL, Pardo S, Ginsberg BH (2000) A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23(8):1143–1148

    Article  CAS  Google Scholar 

  185. Klonoff DC, Lias C, Vigersky R, Clarke W, Parkes JL, Sacks DB, Kirkman MS, Kovatchev BJ (2014) The surveillance error grid. Diabetes Sci Technol 8(4):658–672

    Google Scholar 

  186. Kovatchev BP, Wakeman CA, Breton MD, Kost GJ, Louie RF, Tran NK, Klonoff DC (2014) Computing the surveillance error grid analysis: procedure and examples. J Diabetes Sci Technol 8(4):673–684

    Article  Google Scholar 

  187. Simmons DA (2015) How should blood glucose meter system analytical performance be assessed? J Diabetes Sci Technol 10(1):178–184

    Google Scholar 

  188. Bland J, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8476:307–310

    Article  Google Scholar 

  189. Stephan P, Schmid C, Freckmann G, Pleus S, Haug C, Müller P (2015) The rectangle target plot: a new approach to the graphical presentation of accuracy of systems for self-monitoring of blood glucose. J Diabetes Sci Technol. doi:10.1177/1932296815612490

    Google Scholar 

  190. Müller P, Hattemer A, Stephan P (2015) Assessing system accuracy of blood glucose monitoring systems using rectangle target plots. J Diabetes Sci Technol 10(2):350–365

    Article  Google Scholar 

  191. Krouwer JS, Cembrowski GS (2010) A review of standards and statistics used to describe blood glucose monitor performance. J Diabetes Sci Technol 4(1):75–83

    Article  Google Scholar 

  192. Westgard JO, Petersen PH, Wiebe DA (1991) Laboratory process specifications for assuring quality in the U.S. national cholesterol education program. Clin Chem 37(5):656–661

    CAS  Google Scholar 

  193. Wilmoth DR (2012) The relationships between common measures of glucose meter performance. J Diabetes Sci Technol 6(5):1087–1093

    Article  Google Scholar 

  194. Ramljak S, Lock JP, Schipper C, Musholt PB, Forst T, Lyon M, Pfützner A (2013) Hematocrit interference of blood glucose meters for patient self-measurement. J Diabetes Sci Technol 7(1):179–189

    Article  Google Scholar 

  195. Freckmann G, Schmid C, Baumstark A, Pleus S, Link M, Haug C (2012) System accuracy evaluation of 43 blood glucose monitoring systems for self-monitoring of blood glucose according to DIN EN ISO 15197. J Diabetes Sci Technol 6(5):1060–1075

    Article  Google Scholar 

  196. Gijzen K, Moolenaar DL, Weusten JJ, Pluim HJ, Demir AY (2012) Is there a suitable point-of-care glucose meter for tight glycemic control? Evaluation of one home-use and four hospital-use meters in an intensive care unit. Clin Chem Lab Med 50(11):1985–1992

    Article  CAS  Google Scholar 

  197. Handelsman Y, Bloomgarden ZT, Grunberger G, Umpierrez G, Zimmerman RS, Bailey TS, Blonde L, Bray GA, Cohen AJ, Dagogo-Jack S, Davidson JA, Einhorn D, Ganda OP, Garber AJ, Garvey WT, Henry RR, Hirsch IB, Horton ES, Hurley DL, Jellinger PS, Jovanovič L, Lebovitz HE, LeRoith D, Levy P, McGill JB, Mechanick JI, Mestman JH, Moghissi ES, Orzeck EA, Pessah-Pollack R, Rosenblit PD, Vinik AI, Wyne K, Zangeneh F (2015) American Association of Clinical Endocrinologist and American College of Endocrinology – clinical practice guidelines for developing a diabetes mellitus comprehensive care plan. Endocrine Practice 21(Suppl 1):1–87

    Article  Google Scholar 

  198. American Association of Diabetes Educators (2013) Survey to gauge knowledge regarding blood glucose meter accuracy. https://www.diabeteseducator.org/docs/default-source/legacy-docs/_resources/advocacy/executive_summary_meter_acc_2014.pdf?sfvrsn=2

  199. American Diabetes Association (1994) Self-monitoring of blood glucose. Diabetes Care 17(1):81–86

    Article  Google Scholar 

  200. Klonoff DC, Lias C, Beck S, Parkes JL, Kovatchev B, Vigersky RA, Arreaza-Rubin G, Burk RD, Kowalski A, Little R, Nichols J, Petersen M, Rawlings K, Sacks DB, Sampson E, Scott S, Seley JJ, Slingerland R, Vesper HW (2015) Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol. Oct 18. pii: 1932296815614587 [Epub ahead of print]

    Google Scholar 

  201. Sølvik UØ, Risa M, Jacobsen CE, Monsen G, Sandberg S (2015) Performance of 10 systems for self-monitoring of blood glucose by trained healthcare professionals and in the hands of users. Clin Chem 61(5):772–774

    Article  CAS  Google Scholar 

  202. Freckmann G, Baumstark A, Schmid C, Pleus S, Link M, Haug C (2014) Evaluation of 12 blood glucose monitoring systems for self-testing, system accuracy and measurement reproducibility. Diabetes Technol Ther 16(2):113–122

    Article  CAS  Google Scholar 

  203. Freckmann G, Schmid C, Pleus S, Baumstark A, Link M, Stolberg E, Haug C, Sieber J (2014) System accuracy evaluation of systems for point-of-care testing of blood glucose: a comparison of a patient-use system with six professional-use systems. Clin Chem Lab Med 52(7):1079–1086

    Article  CAS  Google Scholar 

  204. Freckmann G, Link M, Schmid C, Pleus S, Baumstark A, Haug C (2015) System accuracy evaluation of different blood glucose monitoring systems following ISO 15197:2013 by using two different comparison methods. Diabetes Technol Ther 17(9):635–648

    Article  CAS  Google Scholar 

  205. Klonoff DC, Prahalad P (2015) Performance of cleared blood glucose monitors. J Diabetes Sci Technol 9(4):895–910

    Article  CAS  Google Scholar 

  206. Klonoff DC, Reyes JS (2013) Do Currently available dlood glucose monitors meet regulatory standards? 1-Day public meeting in Arlington, Virginia. J Diabetes Sci Technol 7(4):1071–1083

    Article  Google Scholar 

  207. Klonoff DC (2010) Regulatory controversies surround blood glucose monitoring devices. J Diabetes Sci Technol 4(2):231–235

    Article  Google Scholar 

  208. Brookings Institution (2015) Strengthening patient care: building a national postmarket medical device surveillance system. http://www.fda.gov/downloads/AboutFDA/CentersOffices/Officeo fMedicalProductsandTobacco/CDRH/CDRHReports/UCM435112.pdf

  209. Levy P (2013) Poor performance of blood glucose monitors prompts call to action. Endocrine Today, Oct. http://www.healio.com/endocrinology/diabetes/news/print/endocrine-today/%7B9119eae5-4781-4c64-a2ac-7476ca45aa98%7D/poor-performance-of-blood-glucose-monitors-prompts-call-to-action

  210. Karon BS, Boyd JC, Klee GG (2010) Glucose meter performance criteria for tight glycemic control estimated by simulation modeling. Clin Chem 56(7):1091–1097

    Article  CAS  Google Scholar 

  211. Virdi NS, Mahoney J (2013) Importance of blood glucose meter and carbohydrate estimation accuracy. J Diabetes Sci Technol 6(4):921–926

    Article  Google Scholar 

  212. Karon BS, Boyd JC, Klee GG (2013) Empiric. Diabetes Technol Ther 15(12):996–1003

    Article  CAS  Google Scholar 

  213. Breton MD, Kovatchev BP (2010) Impact of blood glucose self-monitoring errors on glucose variability, risk for hypoglycemia, and average glucose control in type 1 diabetes: an in silico study. J Diabetes Sci Technol 4(3):562–570

    Article  Google Scholar 

  214. Boyd JC, Bruns DE (2001) Quality specifications for glucose meters: assessment by simulation modeling of errors in insulin dose. Clin Chem 47(2):209–214

    CAS  Google Scholar 

  215. Tirimacco R, Koumantakis G, Erasmus R, Mosca A, Sandberg S, Watson ID, Goldsmith B, Gillery P (2013) Glucose meters – fit for clinical purpose. Clin Chem Lab Med 51(5):943–952

    Article  CAS  Google Scholar 

  216. Wilinska ME, Hovorka R (2014) Glucose control in the intensive care unit by use of continuous glucose monitoring: what level of measurement error is acceptable? Clin Chem 60(12):1500–1509

    Article  CAS  Google Scholar 

  217. Klonoff DC (2011) Intensive insulin therapy in critically Ill hospitalized patients: making it safe and effective. J Diabetes Sci Technol 5(3):755–767

    Article  Google Scholar 

  218. Pfuetzner A, Mitri M, Musholt PB, Sachsenheimer D, Borchert M, Yap A, Forst T (2012) Clinical assessment of the accuracy of blood glucose measurement devices. Curr Med Res Opin 28(4):525–531

    Google Scholar 

  219. Rebel A, Rice MA, Fahy BG (2012) The accuracy of point-of-care glucose measurements. J Diabetes Sci Technol 6(2):396–411

    Article  Google Scholar 

  220. Lee TMH (2008) Over-the-counter biosensors: past, present, and future. Sensors 8(9):5535–5559

    Article  CAS  Google Scholar 

  221. McNichols RJ, Coté GL (2000) Optical glucose sensing in biological fluids: an overview. J Biomed Opt 5(1):5–16

    Article  CAS  Google Scholar 

  222. Fraser DM (1997) Biosensors in the body: continuous in vivo monitoring. Wiley, New York

    Google Scholar 

  223. Cunningham DD, Stenken JA (eds) (2010) In vivo glucose sensing. Wiley, Hoboken

    Google Scholar 

  224. Gifford R (2013) Continuous glucose monitoring:40 years, what we’ve learned and what's next. Chem Phys Chem 14(10):2032–2044

    CAS  Google Scholar 

  225. Tsujino D, Utsunomiya K (2014) Continuous glucose monitoring (CGM). Rinsho byori 62(1):53–59

    CAS  Google Scholar 

  226. Mauras N, Fox L, Englert K, Beck RW (2013) Continuous glucose monitoring in type 1 diabetes. Endocrine 43(1):41–50

    Article  CAS  Google Scholar 

  227. Heo YJ, Takeuchi S (2013) Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Adv Healthc Mater 2(1):43–56

    Article  CAS  Google Scholar 

  228. Kim HS, Shin JA, Chang JS, Cho JH, Son HY, Yoon KH (2012) Continuous glucose monitoring: current clinical use. Diabetes Metab Res Rev 28(Suppl 2):73–78

    Article  Google Scholar 

  229. Sparacino G, Zanon M, Facchinetti A, Zecchin C, Maran A, Cobelli C (2012) Italian contributions to the development of continuous glucose monitoring sensors for diabetes management. Sensors (Switzerland) 12(10):13753–13780

    Article  Google Scholar 

  230. Joubert M, Reznik Y (2012) Personal continuous glucose monitoring (CGM) in diabetes management: review of the literature and implementation for practical use. Diabetes Res Clin Pract 96(3):294–305

    Article  CAS  Google Scholar 

  231. Skyler JS (2009) Continuous glucose monitoring: an overview of its development. Diabetes Technol Ther 11(Suppl 1):S5–S10

    CAS  Google Scholar 

  232. Oliver NS, Toumazou C, Cass AEG, Johnston DG (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26(3):197–210

    Article  CAS  Google Scholar 

  233. Hoss U, Budiman ES, Liu H, Christiansen M (2013) Continuous glucose monitoring in the subcutaneous tissue over a 14-day sensor wear period. J Diabetes Sci Technol 7(5):1210–1219

    Article  Google Scholar 

  234. Leinung M, Nardacci E, Patel N, Bettadahalli S, Paika K, Thompson S (2013) Benefits of short-Term professional continuous glucose monitoring in clinical practice. Diabetes Technol Ther 15(9):744–747

    Article  CAS  Google Scholar 

  235. Jensen MH, Christensen TF, Tarnow L, Mahmoudi Z, Johansen MD, Hejlesen OK (2013) Professional continuous glucose monitoring in subjects with type 1 diabetes, retrospective hypoglycemia detection. J Diabetes Sci Technol 7(1):135–143

    Article  Google Scholar 

  236. Pepper GM, Steinsapir J, Reynolds K (2012) Effect of short-term iPRO continuous glucose monitoring on hemoglobin A1c levels in clinical practice. Diabetes Technol Ther 14(8):654–657

    Article  CAS  Google Scholar 

  237. Hammond P (2012) Continuous glucose monitoring: the clinical picture. How to interpret and use the data. Pract Diabetes 29(9):364–368

    Article  Google Scholar 

  238. Hirsch IB (2009) Realistic expectations and practical use of continuous glucose monitoring for the endocrinologist. J Clin Endocrin Metabol 94(7):2232–2238

    Article  CAS  Google Scholar 

  239. Kenny C (2014) When hypoglycemia is not obvious, diagnosing and treating under-recognized and undisclosed hypoglycemia. Prim Care Diabet 8(1):3–11

    Article  Google Scholar 

  240. Dunn TC, Hayter GA, Doniger KJ, Wolpert HA (2014) Development of the Likelihood of Low Glucose (LLG) algorithm for evaluating risk of hypoglycemia A new approach for using continuous glucose data to guide therapeutic decision making. J Diabetes Sci Technol 8(4):720–730

    Article  Google Scholar 

  241. Bonomo M, Grassi G, Di Bartolo P, Maran A (2015) Real-time continuous glucose monitoring in adult outpatients. In: Bruttomesso D, Grassi G (eds) Technological advances in the treatment of type 1 diabetes, vol 24, Front diabetes. Karger, Basel, pp 110–127

    Google Scholar 

  242. Gai M, Merlo I, Dellepiane S, Cantaluppi V, Leonardi G, Fop F, Guarena C, Grassi G, Biancone L (2014) Glycemic pattern in diabetic patients on hemodialysis, Continuous Glucose Monitoring (CGM) analysis. Blood Purif 38(1):68–73

    Article  CAS  Google Scholar 

  243. Evans CH, Lee J, Ruhlman MK (2015) Optimal glucose management in the perioperative period. Surg Clin North Am 95(2):337–354

    Article  Google Scholar 

  244. Moghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, Inzucchi SE, Ismail-Beigi F, Kirkman MS, Umpierrez GE (2009) American association of clinical endocrinologists and American diabetes association consensus statement on inpatient glycemic control. Diabetes Care 32(6):1119–1131

    Article  Google Scholar 

  245. Pichardo-Lowden AR (2015) Management of hyperglycemia in hospitalized patients: noncritical care setting. In: Bruttomesso D, Grassi G (eds) Technological advances in the treatment of type 1 diabetes, vol 24, Front diabetes. Karger, Basel, pp 31–46

    Google Scholar 

  246. Brutsaert E, Carey M, Zonszein J (2014) The clinical impact of inpatient hypoglycemia. J Diabetes Complications 28(4):565–572

    Article  Google Scholar 

  247. Savion I, Khoury K, Alkoken G, Raz I, Leibovitz G, Eldor R, Toren O (2010) Glucose management by registered nurses for adult patients hospitalized in medical wards, Structured guidelines (protocol) and working process. Diabetes Spectr 23(4):268–271

    Article  Google Scholar 

  248. Mathioudakis N, Golden SH (2015) A comparison of inpatient glucose management guidelines, implications for patient safety and quality. Curr Diabetes Rep 15(3):1–11

    Article  CAS  Google Scholar 

  249. Fahy BG, Coursin DB (2008) An analysis, hyperglycemic intensive care patients need continuous glucose monitoring-easier said than done. J Diabetes Sci Technol 2(2):201–204

    Article  Google Scholar 

  250. Gomez AM, Umpierrez GE (2014) Continuous glucose monitoring in insulin-treated patients in non-ICU settings. J Diabetes Sci Technol 8(5):930–936

    Article  Google Scholar 

  251. Bridges BC, Preissig CM, Maher KO, Rigby MR (2010) Continuous glucose monitors prove highly accurate in critically ill children. Crit Care 14:R176

    Article  Google Scholar 

  252. National Committee for Clinical Laboratory Standards (NCCLS) (2002) Point-of-care blood glucose testing in acute and chronic care facilities. Approved guideline—2nd edn NCLLS document C30-A2

    Google Scholar 

  253. Wan Sulaiman WA, Hashim HZ, Che Abdullah ST, Hoo FK, Basri H (2014) Managing post stroke hyperglycaemia, moderate glycaemic control is better? An update. EXCLI J 13:825–833

    Google Scholar 

  254. Todi S, Bhattacharya M (2014) Glycemic variability and outcome in critically ill. Indian J Crit Care Med 18(5):285–290

    Article  CAS  Google Scholar 

  255. Srinivasan V, Agus MSD (2014) Tight glucose control in critically ill children – a systematic review and meta-analysis. Pediatr Diabetes 15(2):75–83

    Article  Google Scholar 

  256. Poljakova I, Elsikova E, Chlup R, Kalabus S, Hasala P, Zapletalova J (2013) Glucose sensing module – is it time to integrate it into real-time perioperative monitoring? An observational pilot study with subcutaneous sensors. Biomed Papers 157(4):346–357

    Google Scholar 

  257. Minakata K, Sakata R (2013) Perioperative control of blood glucose level in cardiac surgery. Gen Thorac Cardiovasc Surg 61(2):61–66

    Article  Google Scholar 

  258. Krinsley JS (2014) Should guidelines for glycemic control of the critically ill be individualized? Weighing the evidence from randomized and observational investigations. Hosp Pract 42(2):14–22

    Article  Google Scholar 

  259. Jeschke MG (2013) Clinical review, glucose control in severely burned patients – current best practice. Crit Care 17(4):1–8

    Article  Google Scholar 

  260. Rabiee A, Andreasik V, Abu-Hamdah R, Galiatsatos P, Khouri Z, Gibson BR, Andersen DK, Elahi D (2009) Numerical and clinical accuracy of a continuous glucose monitoring system during intravenous insulin therapy in the surgical and burn intensive care units. J Diabetes Sci Technol 3(4):951–959

    Article  Google Scholar 

  261. Heinemann L, Franc S, Phillip M, Battelino T, Ampudia-Blasco FJ, Bolinder J, Diem P, Pickup J, Hans Devries J (2012) Reimbursement for continuous glucose monitoring. A European view. J Diabetes Sci Technol 6(6):1498–1502

    Article  Google Scholar 

  262. Heinemann L, Devries JH (2014) Evidence for continuous glucose monitoring sufficient for reimbursement? Diabet Med 31(2):122–125

    Article  CAS  Google Scholar 

  263. Battelino T, Dovč K, Bratina N (2015) Real-time continuous glucose monitoring in children and adolescents. Front Diabet 99–109

    Google Scholar 

  264. Dovč K, Bratina N, Battelino T (2015) A new horizon for glucose monitoring. Horm Res Paed 83(3):149–156

    Article  CAS  Google Scholar 

  265. Freckmann G, Pleus S, Link M, Zschornack E, Klötzer HM, Haug C (2013) Performance evaluation of three continuous glucose monitoring systems comparison of six sensors per subject in parallel. J Diabetes Sci Technol 7(4):842–853

    Article  Google Scholar 

  266. Zschornack E, Schmid C, Pleus S, Link M, Klötzer HM, Obermaier K, Schoemaker M, Strasser M, Frisch G, Schmelzeisen-Redeker G, Haug C, Freckmann G (2013) Evaluation of the performance of a novel system for continuous glucose monitoring. J Diabetes Sci Technol 7(4):815–823

    Article  Google Scholar 

  267. Obermaier K, Schmelzeisen-Redeker G, Schoemaker M, Klötzer HM, Kirchsteiger H, Eikmeier H, del Re L (2013) Performance evaluations of continuous glucose monitoring systems: precision absolute elative deviation is part of the assessment. J Diabetes Sci Technol 7(4):824–832

    Article  Google Scholar 

  268. Kirchsteiger H, Freckmann G, Heinemann L, Lodwig V, Schmelzeisen-Redeker G, Schoemaker M, del Re L (2015) Performance comparison of CGM systems: MARD values are not always a reliable indicator of cgm system accuracy. J Diabetes Sci Technol 9(5):1030–1040

    Article  Google Scholar 

  269. Klonoff DC (2012) The need for clinical accuracy guidelines for blood glucose monitors. J Diabetes Sci Technol 6(1):1–4

    Article  Google Scholar 

  270. Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL (2004) Evaluating the accuracy of continuous glucose-monitoring sensors continuous glucose–error grid analysis illustrated by TheraSense Freestyle Navigator data. Diabetes Care 27(8):1922–1928

    Article  CAS  Google Scholar 

  271. Miele A, Weiland K, Dungan KM (2012) Clinical outcomes associated with referral-based continuous glucose monitoring using a central standardized interpretation strategy. Diabetes Technol Ther 14(9):765–771

    Article  CAS  Google Scholar 

  272. Bergenstal RM, Ahmann AJ, Bailey T, Beck RW, Bissen J, Buckingham B, Deeb L, Dolin RH, Garg SK, Goland R, Hirsch IB, Klonoff DC, Kruger DF, Matfin G, Mazze RS, Olson BA, Parkin C, Peters A, Powers MA, Rodriguez H, Southerland P, Strock ES, Tamborlane W, Wesley DM (2013) Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes the ambulatory glucose profile (AGP). Diabetes Technol Ther 15(3):198–211

    Article  Google Scholar 

  273. Hilleman DE (2006) Cost considerations with tight glycemic control in the acute care setting. Semin Thorac Cardiovasc Surg 18(4):359–365

    Article  Google Scholar 

  274. Macrae D, Grieve R, Allen E, Sadique Z, Betts H, Morris K, Pappachan VJ, Parslow R, Tasker RC, Baines P, Broadhead M, Duthie ML, Fortune PM, Inwald D, McMaster P, Peters MJ, Schindler M, Guerriero C, Piercy D, Slavik Z, Snowdon C, Van Dyck L, Elbourne D (2014) A clinical and economic evaluation of control of hyperglycaemia in paediatric intensive care the CHiP randomised controlled trial. Health Technol Assess 18(26):1–210

    Article  Google Scholar 

  275. Mang A, Pill J, Gretz N, Kränzlin B, Buck H, Schoemaker M, Petrich W (2005) Biocompatibility of an electrochemical sensor for continuous glucose monitoring in subcutaneous tissue. Diabetes Diabetes Technol Ther 7(1):163–173

    Article  CAS  Google Scholar 

  276. Schmelzeisen-Redeker G, Staib A, Strasser M, Müller U, Schoemaker M (2013) Overview of a novel sensor for continuous glucose monitoring. J Diabetes Sci Technol 7(4):808–814

    Article  Google Scholar 

  277. Shintani H (1996) Formation and elution of toxic compounds from sterilized medical products Toxic compound formation from irradiated products. Rad Phys Chem 47(1):139–148

    Article  CAS  Google Scholar 

  278. Brookman RS (1991) A new PVC based polymer for medical applications. J Vinyl Addit Techn 13(4):191–194

    Article  CAS  Google Scholar 

  279. Haar HP, List H, Meacham GBK (2006) Direct monitoring of interstitial fluid composition. US 20060,122,536A1

    Google Scholar 

  280. Pfeiffer EF (1994) The “Ulm Zucker Uhr System” and its consequences. Horm Metab Res 26(11):510–514

    Article  CAS  Google Scholar 

  281. Trajanoski Z, Brunner GA, Schaupp L, Ellmerer M, Wach P, Pieber TR, Kotanko P, Skrabal F (1997) Open-flow microperfusion of subcutaneous adipose tissue for on-line continuous ex vivo measurement of glucose concentration. Diabetes Care 20(7):1114–1121

    Article  CAS  Google Scholar 

  282. Schoemaker M, Schwaninger R, Wittmann U, Rinne H, Kontschieder H, Strohmeier W, Andreis E, Röper J, Kotulla R, Lodwig V, Obermaier K, Stephan P, Reuschling W, Rutschmann M (2003) The SCGM1 system: subcutaneous continuous glucose monitoring based on microdialysis technique. Diabetes Technol Ther 5(4):599–608

    Article  CAS  Google Scholar 

  283. Ricci F, Moscone D, Palleschi G (2008) Ex vivo continuous glucose monitoring with microdialysis technique: the example of GlucoDay. IEEE Sens J 8(1):63–70

    Article  CAS  Google Scholar 

  284. Nielsen JK, Freckmann G, Kapitza C, Ocvirk G, Koelker KH, Kamecke U, Gillen R, Amann-Zalan I, Jendrike N, Christiansen JS, Koschinsky T, Heinemann L (2009) Glucose monitoring by microdialysis: performance in a multicenter study. Diabet Med 26(7):714–721

    Article  CAS  Google Scholar 

  285. Ocvirk G, Hajnsek M, Gillen R, Guenther A, Hochmuth G, Kamecke U, Koelker K-H, Kraemer U, Obermaier K, Reinheimer C, Jendrike N (2009) The clinical research tool: a high-performance microdialysis-based system for reliably measuring interstitial fluid glucose concentration. J Diabetes Sci Technol 3(3):468–477

    Article  Google Scholar 

  286. Medtronic Enlite Serter User Guide

    Google Scholar 

  287. Rosdahl LL, Millgard J, Lithell H, Ungerstedt U, Henriksson J (1998) Effect of physiological hyperinsulinemia on blood flow and interstitial glucose concentration in human skeletal muscle and adipose tissue studied by microdialysis. Diabetes 47:1296–1301

    Article  CAS  Google Scholar 

  288. Kuhn L (1998) Biosensors blockbuster or bomb? Electrochemical biosensors for diabetes monitoring. Electrochem Soc Interface. 26–31

    Google Scholar 

  289. Bailey TS, Ahmann A, Brazg R, Christiansen M, Garg S, Watkins E, Welsh JB, Lee SW (2014) Accuracy and acceptability of the 6-day enlite continuous subcutaneous glucose sensor. Diabetes Technol Ther 16(5):277–283

    Article  CAS  Google Scholar 

  290. Pleus S, Schmid C, Link M, Zschornack E, Klötzer HM, Haug C, Freckmann G (2013) Performance evaluation of a continuous glucose monitoring system under conditions similar to daily life. J Diabetes Sci Technol 7(4):833–841

    Article  Google Scholar 

  291. Kulichikhin VG, Antonov SV, Zadymova NM (2009) In: Benedek I, Feldstein MF (eds) Skin contact pressure-sensitive adhesives in applications of pressure-sensitive products. CRC, Boca Raton

    Google Scholar 

  292. Cilurzo F, Gennari CG, Minghetti P (2012) Adhesive properties: a critical issue in transdermal patch development. Expert Opin 9(1):33–45

    CAS  Google Scholar 

  293. Kandavilli S, Nair V, Panchagnula R (2002) Polymers in transdermal drug delivery systems. Pharm Technol 5:62–80

    Google Scholar 

  294. Roche diagnostics GmbH (2007) Accu-Chek® Compact Plus Gebrauchsanleitung. https://www.accu-chek.de/download/info/downloadcenter/Accu-Chek-Compact-Plus-Gebrauchsanweisung-komplett.pdf

  295. Sachse D, Bolstad N, Jonsson M, Sæves I, Johansson CB, Delezuch W, Hagve M, Hardang IM, Isaksson HS, Ivarsson A, Lehto L, Keikkala E, Mattsson N, Ranta JK, Stavelin A, Sudmann AA, Varsi K (2012) The Accu-Chek Mobile blood glucose monitoring system used under controlled conditions meets ISO 15197 standards in the hands of diabetes patients. Scand J Clin Lab Invest 72(5):374–379

    Article  CAS  Google Scholar 

  296. Overland J, Abousleiman J, Chronopoulos A, Leader N, Molyneaux L, Gilfillan C (2014) Improving self-monitoring of blood glucose among adults with type 1 diabetes: results of the Mobile™ study. Diabetes Ther 5(2):557–565

    Article  CAS  Google Scholar 

  297. Roche diagnostics (2011) Evaluation report: Accu-Chek® Aviva test strips with advanced chemistry. https://www.accu-chek.ch/documents/Accu-Chek_Aviva_Evaluation_Report.pdf

  298. Jensen JA, Goodson WH, Hopf HW, Hunt TK (1991) Cigarette smoking decreases tissue oxygen. Arch Surg 126:1131–1134

    Article  CAS  Google Scholar 

  299. Sheffield CW, Sessler DI, Hopf HW, Schroeder M, Moayeri A, Hunt TK, West JM (1997) Centrally and locally mediated thermoregulatory responses alter subcutaneous oxygen tension. Wound Repair Regen 4:339–345

    Article  Google Scholar 

  300. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15(6):1239–1253

    Article  CAS  Google Scholar 

  301. Wisniewski N, Moussy F, Reichert WM (2000) Characterization of implantable biosensor membrane biofouling. Fresenius J Anal Chem 366:611–621

    Article  CAS  Google Scholar 

  302. Lönnroth P, Jansson A, Smith U (1987) A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253:E228–E231

    Google Scholar 

  303. Jensen BM, Bjerring P, Christiansen JS, Orskov H (1995) Glucose content in human skin: relationship with blood glucose levels. Scand J Clin Lab Invest. 55427–55432

    Google Scholar 

  304. Cengiz E, Tamborlane WV (2009) A tale of two compartments interstitial versus blood glucose monitoring. Diabetes Technol Ther 11(Suppl 1):S11–S16

    Google Scholar 

  305. Jungheim K, Koschinsky T (2001) Risky delay of hypoglycemia detection by glucose monitoring at the arm. Diabetes Care 24:1303–1306

    Article  CAS  Google Scholar 

  306. Koschinsky T, Heinemann L (2001) Sensors for glucose monitoring technical and clinical aspects. Diabetes Metab Res Rev 17:113–123

    Article  CAS  Google Scholar 

  307. Steil GM, Rebrin K, Hariri F, Jinagonda S, Tadros S, Darwin C, Saad MF (2005) Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia 481:833–1840

    Google Scholar 

  308. Rebrin K, Steil GM, van Antwerp W, Mastrototaro JJ (1999) Subcutaneous glucose predicts plasma glucose independent of insulin implications for continuous monitoring. Am J Physiol 277:E561–E571

    CAS  Google Scholar 

  309. Ward WK, Engle JM, Branigan D, El Youssef J, Massoud RG, Castle JR (2012) The effect of rising vs. falling glucose level on amperometric glucose sensor lag and accuracy in Type1 diabetes. Diabet Med 29(8):1067–1073

    Article  CAS  Google Scholar 

  310. Braverman IM, Keh-Yen A (1981) Ultrastructure of the human dermal microcirculation. III. The vessels in the mid- and lower dermis and subcutaneous fat. J Invest Dermatol 77:297–304

    Article  CAS  Google Scholar 

  311. Schure NY, Elias M (1991) The biochemistry and function of stratum corneum lipids. Adv Lipid Res 24:27–56

    Article  Google Scholar 

  312. Anderson JM, McNally AK (2011) Biocompatibility of implants: lymphocyte/macrophage interactions. Semin Immunopathol 33:221–233

    Article  CAS  Google Scholar 

  313. Nichols S, Koh A, Storm WL, Shin JH, Schoenfisch MH (2013) Biocompatible materials for continuous glucose monitoring devices. Chem Rev 113(4):2528–2549

    Article  CAS  Google Scholar 

  314. Frost M, Meyerhoff ME (2006) In vivo chemical sensors, tackling biocompatibility. Anal Chem 78(21):7370–7377

    Article  CAS  Google Scholar 

  315. Sharkawy AA, Klitzman B, Truskey GA, Reichert WM (1997) Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J Biomed Mater Res A (37):401–412

    Google Scholar 

  316. Helton KL, Ratner BD, Wisniewski NA (2011) Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part I: theoretical framework. J Diabetes Sci Technol 5:632–646

    Article  Google Scholar 

  317. Hoss U, Budiman ES, Liu H, Christiansen M (2014) Feasibility of factory calibration for subcutaneous glucose sensors in subjects with diabetes. J Diabetes Sci Technol 8(1):89–94

    Article  Google Scholar 

  318. Bessmas S, Schultz RD (1973) Prototype glucose-oxygen sensor for the artificial pancreas. Trans Am Soc Artif Intern Organs 19:361–364

    Article  Google Scholar 

  319. Soeldner JS, Chang KW, Aisenberg S, Hiebert JM (1973) Progress towards an implantable glucose sensor and an artificial beta cell. In: Temporal aspects of therapeutics—volume 2 of the series ALZA conference series. Plenum Press, New York, pp 181–207

    Chapter  Google Scholar 

  320. Kondo T, Ito K, Ohkura K, Ito K, Ikeda S (1982) A miniature glucose sensor, implantable in the blood stream. Diabetes Care 5(3):218–221

    Article  CAS  Google Scholar 

  321. Updike SJ, Shults M, Ekman B (1982) Implanting the glucose enzyme electrode problems, progress, and alternative solutions. Diabetes Care 5(3):207–212

    Article  CAS  Google Scholar 

  322. Gough DA, Leypoldt JK, Armour JC (1982) Progress toward a potentially implantable enzyme based glucose sensor. Diabetes Care 5(3):190–198

    Article  CAS  Google Scholar 

  323. Clark LC Jr, Duggan CA (1982) Implanted electroenzymic glucose sensors. Diabetes Care 5(3):174–180

    Article  CAS  Google Scholar 

  324. Wilkins E, Wilkins MG (1983) Implantable glucose sensor. J Biomed Eng 5(4):309–315

    Article  CAS  Google Scholar 

  325. Pesantez DE (2014) Microarray electrodes useful with analyte sensors and methods for making and using them. US 20140163346

    Google Scholar 

  326. Feldman B, Brazg R, Schwartz S, Weinstein R (2003) A continuous glucose sensor based on Wired Enzyme™ technology – results from a 3-day trial in patients with type 1 diabetes. Diabetes Technol Ther 5(5):769–779

    Article  CAS  Google Scholar 

  327. Staib A, Mischler R, Hajnsek M, Buck H, Jernigan W (2013) Amperometric sensor and method for its manufacturing. US8527024B2

    Google Scholar 

  328. Salimi A, Compton RG, Hallaj R (2004) Glucose biosensor prepared by glucose oxidase encapsulated sol–gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal Biochem 333(1):49–56

    Article  CAS  Google Scholar 

  329. Ocvirk G, Gaessler-Dietsche C (2012) Enzyme stabilization in electrochemical sensors. EP 2,251,432 B1

    Google Scholar 

  330. Linn JH (2006) Tissue distribution and pharmacodynamics: a complicated relationship. Curr Drug Metab 7(1):39–65

    Article  Google Scholar 

  331. Fischer U, Hidde A, von Woedtke H, Rebrin K, Abel P (1989) Oxygen tension at the subcutaneous implantation site of glucose sensors. Biomed Biochim Acta 48:965–971

    CAS  Google Scholar 

  332. Abel P, Fischer U, Brunstein E, Ertle R (1988) The GOD-H2O2-electrode as an approach to implantable glucose sensors. Horm Metab Res Suppl Ser 20:26–29

    CAS  Google Scholar 

  333. Clark LC, Noyes LK, Spokane RB, Sudan R, Miller ML (1988) Long-term implantation of voltammetric oxidase/peroxide glucose sensors in the rat peritoneum. Methods Enzymol 137:68–89

    Article  CAS  Google Scholar 

  334. Gough DA (1988) Issues related to in vitro operation of potentially implantable enzyme electrode glucose sensors. Horm Metab Res Suppl Ser 20:30–33

    CAS  Google Scholar 

  335. Shaw GW, Claremont DJ, Pickup JC (1991) In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients. Biosens Bioelectron 6:401–406

    Article  CAS  Google Scholar 

  336. Wilson GS, Zhang Y, Reach G, Moatti-Sirat D, Poitout V, Thevenot DR, Lemonnier F, Klein JC (1992) Progress toward the development of an implantable sensor for glucose. Clin Chem 38:1613–1617

    CAS  Google Scholar 

  337. Bindra DS, Zhang Y, Wilson GS, Sternberg R, Thevenot DR, Moatti D, Reach G (1991) Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal Chem 63:1692–1696

    Article  CAS  Google Scholar 

  338. Shichiri M, Yamasaki Y, Nao K, Sekiya M, Ueda N (1988) In vivo characteristics of needle-type glucose sensor-measurements of subcutaneous glucose concentrations in human volunteers. Horm Metab Res Suppl Ser 20:17–20

    CAS  Google Scholar 

  339. Moussy F, Harrison DJ, Rajotte RV (1994) A miniaturized nafion-based glucose sensor, In vitro and in vivo evaluation in dogs. Int J Artif Organs 17:88–94

    CAS  Google Scholar 

  340. Zhang Y, Wilson GS (1993) In vitro and in vivo evaluation of oxygen effects on a glucose oxidase based implantable glucose sensor. Anal Chim Acta 281:513–520

    Article  CAS  Google Scholar 

  341. Yu B, Moussy Y, Moussy F (2005) Coil-type implantable glucose biosensor with excess enzyme loading. Front Biosci 10:512–520

    Article  CAS  Google Scholar 

  342. Yu B, Long N, Moussy Y, Moussy F (2006) A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane. Biosens Bioelectron 21:2275–2282

    Article  CAS  Google Scholar 

  343. Boock R, Rixman M (2011) Silicone based membranes for use in implantable glucose sensors. US 8,543,184B2

    Google Scholar 

  344. Harrison DJ, Turner RF, Baltes H (1988) Characterization of perfluoro-sulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood. Anal Chem 60(19):2002–2007

    Article  CAS  Google Scholar 

  345. Moussy F, Harrison DJ, O’Brien DW, Rajotte RV (1993) Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating. Anal Chem 65(15):2072–2077

    Article  CAS  Google Scholar 

  346. Galeska I, Chattopadhyay D, Moussy F, Papadimitrakopoulos F (2000) Calcification-resistant Nafion/Fe3+ assemblies for implantable biosensors. Biomacromol 1(2):202–207

    Article  CAS  Google Scholar 

  347. Galeska I, Chattopadhyay D, Papadimitrakopoulos F (2002) Application of polyanion/Fe3 multilayered membranes in prevention of biosensor mineralization. J Macromol Sci Pure Appl Chem 39(10):1207–1222

    Article  CAS  Google Scholar 

  348. Ward WK, Slobodzian EP, Tiekotter KL, Wood MD (2002) The effect of microgeometry, implant thickness and polyurethane chemistry on the foreign body response to subcutaneous implants. Biomaterials 23(21):4185–4192

    Article  CAS  Google Scholar 

  349. Yang Y, Zhang SF, Kingston MA, Jones G, Wright G, Spencer SA (2000) Glucose sensor with improved haemocompatibilty. Biosens Bioelectron 15:221–227

    Article  CAS  Google Scholar 

  350. Wisniewski N, Reichert M (2000) Methods for reducing biosensor membrane biofouling. Colloid Surf B 18:197–219

    Article  CAS  Google Scholar 

  351. Zhang S, Benmakroha Y, Rolfe P, Shinobu T, Kazuhiko I (1996) Development of a haemocompatible pO2 sensor with phospholipid-based copolymer membrane. Biosens Bioelectron 11:1019–1029

    Article  CAS  Google Scholar 

  352. Yajima S, Sonoyama Y, Suzuki K, Kimura K (2002) Ion-sensor property and blood compatibility of neutral-carrier-type poly(vinyl chloride) membranes coated by phosphorylcholine polymers. Anal Chim Acta 463:31–37

    Article  CAS  Google Scholar 

  353. Ishihara K, Nakabayashi N, Nishida K, Sakakida M, Shichiri M (1994) New biocompatible polymer, application for implantable glucose sensor. Diag Biosens Polymer 556:194–210

    Article  CAS  Google Scholar 

  354. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789

    Article  CAS  Google Scholar 

  355. Quinn CAP, Connor RE, Heller A (1997) Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors. Biomaterials 18:1665–1670

    Article  CAS  Google Scholar 

  356. Deitzel JM, Kleinmeyer J, Harris DEA, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  357. Suri JT, Cordes DB, Cappuccio FE, Wessling RA, Singaram B (2003) Continuous glucose sensing with a fluorescent thin-film hydrogel. Angew Chem Int Ed Engl 42(47):5857–5859

    Article  CAS  Google Scholar 

  358. Praveen SS, Hanumantha R, Belovich JM, Davis BL (2003) Novel hyaluronic acid coating for potential use in glucose sensor design. Diabetes Technol Ther 5:393–399

    Article  CAS  Google Scholar 

  359. Yu B, Ju Y, West L, Moussy Y, Moussy F (2007) An investigation of long-term performance of minimally invasive glucose biosensors. Diabetes Technol Ther 9:265–275

    Article  CAS  Google Scholar 

  360. Tipnis R, Vaddiraju S, Jain F, Burgess DJ, Papadimitrakopoulos F (2007) Layer-by-layer assembled semipermeable membrane for ampero-metric glucose sensors. J Diabetes Sci Technol 1(2):193–200

    Article  Google Scholar 

  361. Galeska I, Hickey T, Moussy F, Kreutzer D, Papadimitrakopoulos F (2001) Characterization and biocompatibility studies of novel humic acids based films as membrane material for an implantable glucose sensor. Biomacromol 2(4):1249–1255

    Article  CAS  Google Scholar 

  362. Dungel P, Long N, Yu B, Moussy Y, Moussy F (2008) Study of the effects of tissue reactions on the function of implanted glucose sensors. J Biomed Mater Res A 85A:699–706

    Article  CAS  Google Scholar 

  363. Koschwanez HE, Reichert WM, Klitzman B (2010) Intravital microscopy evaluation of angiogenesis and its effects on glucose sensor performance. J Biomed Mater Res A 93A:1348–1357

    CAS  Google Scholar 

  364. Koschwanez HE, Yap FY, Klitzman B, Reichert WMJ (2008) In vitro and in vivo characterization of porous poly-L-lactic acid coatings for subcutaneously implanted glucose sensors. J Biomed Mater Res A 87A:792–807

    Article  CAS  Google Scholar 

  365. Sharkawy AA, Klitzman B, Truskey GA, Reichert WMJ (1998) Engineering the tissue which encapsulates subcutaneous implants. II. Plasma–tissue exchange properties. J Biomed Mater Res 40:586–597

    Article  CAS  Google Scholar 

  366. Sharkawy AA, Klitzman B, Truskey GA, Reichert WMJ. (1998) Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J Biomed Mater Res (40):598–605

    Google Scholar 

  367. Updike SJ, Shults MC, Gilligan BJ, Rhodes RK (2000) A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration. Diabetes Care 23:208–214

    Article  CAS  Google Scholar 

  368. Marshall AJ, Irvin CA, Barker T, Sage EH, Hauch KD, Ratner BD (2004) Biomaterials with tightly controlled pore size that promote vascular in-growth. ACS Polym Prepr 45:100–101

    CAS  Google Scholar 

  369. Subbaroyan J, Martin DC, Kipke DR (2005) A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J Neural Eng 2:103–113

    Article  Google Scholar 

  370. Ward WK, Hansen JC, Massoud RG, Engle JM, Takeno MM, Hauch KD (2010) Controlled release of dexamethasone from subcutaneously-implanted biosensors in pigs: localized anti-inflammatory benefit without systemic effects. J Biomed Mater Res A 94A:280–287

    Article  CAS  Google Scholar 

  371. Klueh U, Kaur M, Montrose DC, Kreutzer DL (2007) Inflammation and glucose sensors: use of dexamethasone to extend glucose sensor function and life span in vivo. J Diabetes Sci Technol 1:496–504

    Article  Google Scholar 

  372. Ju YM, Yu BZ, West L, Moussy Y, Moussy FJ (2010) A dexamethasone-loaded PLGA microspheres/collagen scaffold composite for implantable glucose sensors. J Biomed Mater Res A 93A:200–210

    CAS  Google Scholar 

  373. Mou X, Lennartz MR, Loegering DJ, Stenken JAJ (2011) Modulation of the foreign body reaction for implants in the subcutaneous space: microdialysis probes as localized drug delivery/sampling devices. J Diabetes Sci Technol 5:619–631

    Article  CAS  Google Scholar 

  374. Klueh U, Dorsky DI, Kreutzer DL (2005) Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials 26:1155–1163

    Article  CAS  Google Scholar 

  375. Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117:68–79

    Article  CAS  Google Scholar 

  376. Norton LW, Koschwanez HE, Wisniewski NA, Klitzman B, Reichert WM (2007) Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J Biomed Mater Res A (81A):858–869

    Google Scholar 

  377. Edelman JL, Lutz D, Castro MR (2005) Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res 80:249–258

    Article  CAS  Google Scholar 

  378. Machein MR, Kullmer J, Ronicke V, Machein U, Krieg M, Damert A, Breier G, Risau W, Plate KH (1999) Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol Appl Neurobiol 25:104–112

    Article  CAS  Google Scholar 

  379. Wu WS, Wang FS, Yang KD, Huang CC, Kuo YRJ (2006) Dexamethasone induction of keloid regression through effective suppression of VEGF expression and keloid fibroblast proliferation. J Invest Dermatol 126:1264–1271

    Article  CAS  Google Scholar 

  380. Carreau A, Kieda C, Grillon C (2011) Nitric oxide modulates the expression of endothelial cell adhesion molecules involved in angiogenesis and leukocyte recruitment. Exp Cell Res 317:29–41

    Article  CAS  Google Scholar 

  381. Gifford R, Batchelor MM, Lee Y, Gokulrangan G, Meyerhoff ME, Wilson GS (2005) Mediation of in vivo glucose sensor inflammatory response via nitric oxide release. J Biomed Mater Res A (75A):755–766

    Google Scholar 

  382. Heise HM, Marbach R, Koschinsky T, Gries FA (1994) Noninvasive blood glucose sensors based on near-infrared spectroscopy. Artif Organs 18(6):439–447

    Article  CAS  Google Scholar 

  383. Renard E (2008) Implantable continuous glucose sensors. Curr Diabetes Rev 4(3):169–174

    Article  CAS  Google Scholar 

  384. Brauker JH (2015) Transcutaneous analyte sensor. US 8,989,833

    Google Scholar 

  385. Poscia A, Mascini M, Moscone D, Luzzana M, Caramenti G, Cremonesi P, Valgimigli F, Bongiovanni C, Varalli M (2003) A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens Bioelectron 18(7):891–898

    Article  CAS  Google Scholar 

  386. Lucarelli F, Ricci F, Caprio F, Valgimigli F, Scuffi C, Moscone D, Palleschi G (2012) GlucoMen day continuous glucose monitoring system A screening for enzymatic and electrochemical interferents. J Diabetes Sci Technol 6(5):1172–1181

    Article  Google Scholar 

  387. Brister MC (2015) Transcutaneous analyte sensor. US 7,494,465

    Google Scholar 

  388. Schachl K, Alemu H, Kalcher K, Ježkova J, Švancara I, Vytřas K (1997) Amperometric determination of hydrogen peroxide with a manganese dioxide-modified carbon paste electrode using flow injection analysis. Analyst 122(9):985–989

    Article  CAS  Google Scholar 

  389. McEnroe RJ, Burritt MF, Powers DM, Rheinheimer DW, Wallace BH (2005) Interference testing in clinical chemistry. Approved Guideline, 2nd edn. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  390. Wu H (2015) Rapid-read gated amperometry devices. US 9,034,160B2

    Google Scholar 

  391. Cardosi M (2012) Systems and methods for determining a substantially hematocrit independent analyte concentration. US 8,293,096

    Google Scholar 

  392. Hayter G, Doniger KJ, Budiman ES, Zhang S, Mazza JC (2014) Method and system for providing calibration of an analyte sensor in an analyte monitoring system. US 8,376,945

    Google Scholar 

  393. Goode Paul V (2014) Systems and Methods for replacing signal artifacts in a glucose sensor data stream. US 8,010,174

    Google Scholar 

  394. Buck HB (2010) Electrochemical Sensor and method for continuous analyte monitoring. US 7,731,835

    Google Scholar 

  395. Rose J (2015) Method and apparatus for continuous analyte monitoring. US 9,008,744

    Google Scholar 

  396. Wang L, Shah, R, Cooper KW, Yoon, RK, Lee H (2011) Method and system for detecting age, hydration, and functional states of sensors using electrochemcial impedance spectroscopy. US 7,985,330B2

    Google Scholar 

  397. Buck HB (2010) System and method for operating an electrochemical analyte sensor. US 7,751,864

    Google Scholar 

  398. Yang N (2013) Application of electrochemcial impedance spectroscopy in sensor systems, devices, and related methods. WO 2013184,416A2

    Google Scholar 

  399. Telson SA, Gifford R, Fei J, Reynolds JS (2011) Electrochemical impedance spectroscopy enabled continuous glucose monitoring system. US 20110,040,163A1

    Google Scholar 

  400. Varsavsky A (2015) Use of electrochemical impedance spectroscopy (EIS) in intelligent diagnostics. US 20150,164,387

    Google Scholar 

  401. Shah R, Gottlieb RK (2014) Method of making a sensor with layered electrodes. US 8,850,688B2

    Google Scholar 

  402. Gottlieb RK, Grovender EA, Hoss U, Pendo SM, Shah R, Soundararajan G (2010) Biosensors and Methods for making and using them. US 7,813,780B2

    Google Scholar 

  403. Li X, Shah R, Yang Q, Li Y, Pham B (2013) Layered enzyme compositions for use with analyte sensors. US 8,608,921B2

    Google Scholar 

  404. Van Antwerp W (1996) Homogeneous polymer compositions containing silicone for biosensor membranes. EP 0,817,809B1

    Google Scholar 

  405. Vachon David J (2002) Anti-inflammatory biosensor for reduced biofouling and enhanced sensor performance. US 7,153,265B2

    Google Scholar 

  406. Shults MC, Updike SJ, Rhodes RK, Gilligan, BJ, Tapsak MA (2014) Device and method for determining analyte levels. US 8,923,947B2

    Google Scholar 

  407. Tapsak MA, Rhodes RK, Rathbun K, Shults MC, McClure JD (2007) Techniques to improve polyurethane membranes for implantable glucose sensors. US 7,226,978

    Google Scholar 

  408. Boock RJ, Rixman MA, Zhang H, Estes MJ, Lawrence K (2015) Polymer membranes for continuous analyte sensors. US 8,954,128B2

    Google Scholar 

  409. Brauker JH, Shults M, Tapsak MA (2014) Membrane for use with implantable devices. US 8,840,552

    Google Scholar 

  410. Brauker JH, Tapsak MA, Shults M, Carr-Brendel V, Fisher JC, Seare WJ, Neale V (2005) Implantable analyte sensor. US 20050245799

    Google Scholar 

  411. Boock RJ (2015) Polymer Membrane for continuous analyte sensors. US 8,954,128

    Google Scholar 

  412. Petisce JR (2014) Oxygen enhancing membrate system for implantable devices. US 8,909,314

    Google Scholar 

  413. Ricci F, Caprio F, Poscia A, Valgimigli F, Messeri D, Lepori E, Dall'Oglio G, Palleschi G, Moscone D (2007) Toward continuous glucose monitoring with planar modified biosensors and microdialysis study of temperature, oxygen dependence and in vivo experiment. Biosens Bioelectron 22(9–10):2032–2039

    Article  CAS  Google Scholar 

  414. Ricci F, Moscone D, Tuta CS, Palleschi G, Amine A, Poscia A, Valgimigli F, Messeri D. (2005) Novel planar glucose biosensors for continuous monitoring use. Biosens Bioelectron 20(10 Spec Iss):1993–2000

    Google Scholar 

  415. Valgimigli F, Lucarelli F, Scuffi C, Morandi S, Sposato I (2010) Evaluating the clinical accuracy of GlucoMen® day, a novel microdialysis-based continuous glucose monitor. J Diabetes Sci Technol 4(5):1182–1192

    Article  Google Scholar 

  416. Mao F, Cho H (2005) Biosensor membranes composed of polymers containing heterocyclic nitrogens. US 6,932,894

    Google Scholar 

  417. Feldman BJ, Ouyang T, Cho B (2014) Heterocyclic Nitrogen containing polymers coated analyte monitoring device and methods of use. US 8,808,515

    Google Scholar 

  418. Heller A, Pishko MV (1997) Subcutaneous glucose electrode. US 5,593,852

    Google Scholar 

  419. Johnson KW, Mastrototaro JJ, Howey DC, Brunelle RL, Burden-Brady L, Bryan NA, Andrew CC, Rowe HM, Allen DJ, Noffke BW, McMahan WC, Morff RJ, Lipson D, Nevin RS (1992) In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosens Bioelectron 7:709–714

    Article  CAS  Google Scholar 

  420. Mastrototaro JJ, Johnson KW, Molt RJ, Lipson D, Andrew CC, Allen DJ (1991) An electroenzymatic glucose sensor fabricated on a flexible substrate. Sens Actuators B 5:139–144

    Article  CAS  Google Scholar 

  421. Allen CT, Khan TS (2009) Method and system for producing thin film biosensors. US20090294277A1

    Google Scholar 

  422. LaPorte RJ (1997) Considerations for development and manufacture. In: Hydrophilic polymer coatings for medical devices. CRC, Boca Raton

    Google Scholar 

  423. Bequette BW (2010) Continuous glucose monitoring. Real-time algorithms for calibration, filtering, and alarms. J Diabetes Sci Technol 4(2):404–418

    Article  Google Scholar 

  424. Rebrin K, Sheppard NF, Steil GM (2010) Use of subcutaneous interstitial fluid glucose to estimate blood glucose revisiting delay and sensor offset. J Diabetes Sci Technol 4(5):1087–1098

    Article  Google Scholar 

  425. Thomas K, Kiwit M, Kerner W (1998) Glucose concentration in human subcutaneous adipose tissue: comparison between forearm and abdomen. Exp Clin Endocrin Diabet 106(6):465–469

    Article  CAS  Google Scholar 

  426. Schmidt FJ, Sluiter WJ, Schoonen AJM (1993) Glucose concentration in subcutaneous extracellular space. Diabetes Care 16(5):695–700

    Article  CAS  Google Scholar 

  427. Meyerhoff C, Mennel FJ, Bischof F, Sternberg F, Pfeiffer EF (1994) Combination of microdialysis and glucose sensor for continuous on line measurement of the subcutaneous glucose concentration Theory and practical application. Horm Metabol Res 26(11):538–543

    Article  CAS  Google Scholar 

  428. Pickup JC, Claremont DJ, Shaw GW (1993) Responses and calibration of amperometric glucose sensors implanted in the subcutaneous tissue of man. Acta Diabetol 30(3):143–148

    Article  CAS  Google Scholar 

  429. Tiessen RG, Kaptein WA, Venma K, Korf J (1999) Slow ultrafiltration for continuous in vivo sampling. Application for glucose and lactate in man. Anal Chim Acta 379(3):327–335

    Article  CAS  Google Scholar 

  430. Moatti-Sirat D, Capron F, Poitout V, Reach G, Bindra DS, Zhang Y, Wilson GS, Thévenot DR (1992) Towards continuous glucose monitoring in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue. Diabetologia 35(3):224–230

    Article  CAS  Google Scholar 

  431. Kamath A, Mahalingam A, Brauker J (2009) Analysis of time lags and other sources of error of the dexcom seven continuous glucose monitor. Diabetes Technol Ther 11(11):689–695

    Article  CAS  Google Scholar 

  432. Facchinetti A, Sparacino G, Cobelli C (2010) Enhanced accuracy of continuous glucose monitoring by online extended kalman filtering. Diabetes Technol Ther 12(5):353–363

    Article  CAS  Google Scholar 

  433. Leal Y, Garcia-Gabin W, Bondia J, Esteve E, Ricart W, Fernández-Real JM, Vehí J (2010) Real-time glucose estimation algorithm for continuous glucose monitoring using autoregressive models. J Diabetes Sci Technol 4(2):391–403

    Article  Google Scholar 

  434. Facchinetti A, Del Favero S, Sparacino G, Castle JR, Ward WK, Cobelli C (2014) Modeling the glucose sensor error. IEEE Trans Biomed Eng 61(3):620–629

    Article  Google Scholar 

  435. Sparacino G, Facchinetti A, Zecchin C, Cobelli C (2014) Algorithmically smart continuous glucose sensor concept for diabetes monitoring. IFMBE Proc 41:1543–1546

    Article  Google Scholar 

  436. Schiavon M, Dalla Man C, Dube S, Slama M, Kudva YC, Peyser T, Basu A, Basu R, Cobelli C (2015) Modeling plasma-to-interstitium glucose kinetics from multitracer plasma and microdialysis data. Diabetes Technol Ther 17(11):825–831

    Article  CAS  Google Scholar 

  437. Mahmoudi Z, Johansen MD, Christiansen JS, Hejlesen O (2014) Comparison between one-point calibration and two-point calibration approaches in a continuous glucose monitoring algorithm. J Diabetes Sci Technol 8(4):709–719

    Article  CAS  Google Scholar 

  438. Choleau C, Klein JC, Reach G, Aussedat B, Demaria-Pesce V, Wilson GS, Gifford R, Ward WK (2002) Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients Part 2 Superiority of the one-point calibration method. Biosens Bioelectron 17(8):647–654

    Article  CAS  Google Scholar 

  439. Brister MC (2015) Dual Electrode system for a continuous analyte sensor. US 7,831,287

    Google Scholar 

  440. Schmidtke DW, Heller A (1998) Accuracy of the one-point in vivo calibration of “Wired” glucose oxidase electrodes implanted in jugular veins of rats in periods of rapid rise and decline of the glucose concentration. Anal Chem 70(10):2149–2155

    Article  CAS  Google Scholar 

  441. Rossetti P, Bondia J, Vehí J, Fanelli CG (2010) Estimating plasma glucose from interstitial glucose. The issue of calibration algorithms in commercial continuous glucose monitoring devices. Sensors 10(12):10936–10952

    Article  CAS  Google Scholar 

  442. McGarraugh G, Brazg R, Weinstein R (2011) FreeStyle navigator continuous glucose monitoring system with TRUstart algorithm, a 1-hour warm-up time. J Diabetes Sci Technol 5(1):99–106

    Article  Google Scholar 

  443. Keenan DB, Cartaya R, Mastrototaro JJ (2010) Accuracy of a new real-time continuous glucose monitoring algorithm. J Diabetes Sci Technol 4(1):111–118

    Article  Google Scholar 

  444. Keenan DB, Mastrototaro JJ, Zisser H, Cooper KA, Raghavendhar G, Lee SW, Yusi J, Bailey TS, Brazg RL, Shah RV (2012) Accuracy of the enlite 6-day glucose sensor with Guardian and Veo calibration algorithms. Diabetes Technol Ther 14(3):225–231

    Article  CAS  Google Scholar 

  445. Hayter GA (2013) Method and system for dynamically updating calibration parameters for an analyte sensor. US 7,618,369

    Google Scholar 

  446. Del Favero S, Facchinetti A, Sparacino G, Cobelli C (2015) Retrofitting of continuous glucose monitoring traces allows more accurate assessment of glucose control in outpatient studies. Diabetes Technol Ther 17(5):355–363

    Article  CAS  Google Scholar 

  447. Del Favero S, Facchinetti A, Sparacino G, Cobelli C (2014) Improving accuracy and precision of glucose sensor profiles retrospective fitting by constrained deconvolution. IEEE Trans Biomed Eng 61(4):1044–1053

    Article  Google Scholar 

  448. Facchinetti A, Sparacino G, Cobelli C (2010) An online self-tunable method to denoise CGM sensor data. IEEE Trans Biomed Eng 57(3):634–641

    Article  Google Scholar 

  449. Facchinetti A, Sparacino G, Cobelli C (2011) Online denoising method to handle intraindividual variability of signal-to-noise ratio in continuous glucose monitoring. IEEE Trans Biomed Eng 58(9):2664–2671

    Article  Google Scholar 

  450. Facchinetti A, Sparacino G, Cobelli C (2013) Signal processing algorithms implementing the “smart sensor” concept to improve continuous glucose monitoring in diabetes. J Diabetes Sci Technol 7(5):1308–1318

    Article  Google Scholar 

  451. Garcia A, Rack-Gomer AL, Bhavaraju NC, Hampapuram H, Kamath A, Peyser T, Facchinetti A, Zecchin C, Sparacino G, Cobelli C (2013) DexCom G4AP: an advanced continuous glucose monitor for the artificial pancreas. J Diabetes Sci Technol 7(6):1436–1445

    Article  Google Scholar 

  452. Abbott Diabetes Care Ltd. (2014) Freestyle Libre Flash glukose Messsystem Benutzerhandbuch

    Google Scholar 

  453. Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S (2015) The performance and usability of a factory-calibrated flash glucose monitoring system. J Diabetes Sci Technol 17(11):787–794

    Article  CAS  Google Scholar 

  454. Bailey TS, Chang A, Christiansen M (2015) Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. J Diabetes Sci Technol 9(2):209–214

    Article  CAS  Google Scholar 

  455. Medtronic MiniMed (2014) Minilink real time transmitter user guide. https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/minilink_user_guide.pdf

  456. DexCom, Inc. (2015) DexCom G4 platinum with share user guide. http://www.dexcom.com/sites/dexcom.com/files/dexcom-g4-platinum/ifu/dexcom-g4-platinum-ifu.pdf

  457. Abbott Diabetes Care Ltd (2015) FreeStyle Navigator II Expertenanleitung. https://www.abbott-diabetes-care.de/uploads/tx_products/FreeStyleNavigatorII_Expertenanleitung_PW.pdf

  458. Abbott Diabetes Care (2015) https//abbottdiabetescare.co.uk/our-products/freestyle-libre. https//abbottdiabetescare.co.uk/our-products/freestyle-libre

    Google Scholar 

  459. Medtronic Diabetes (2010) mySentry™ user guide. https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/MP6025332-011_j+FINALUser+Guide_RxOnly.pdf

  460. Nightscout (2016), Nightscout. http//www.nightscout.info/

  461. Medtronic Diabetes (2015) MiniMed® Connect. http//www.medtronicdiabetes.com/products/minimed-connect

  462. Kohnert KD, Heinke P, Fritzsche G, Vogt L, Augstein P, Salzsieder E (2013) Evaluation of the mean absolute glucose change as a measure of glycemic variability using continuous glucose monitoring data. Diabetes Technol Ther 15(6):448–454

    Article  CAS  Google Scholar 

  463. Mazze RS, Strock E, Wesley D, Borgman S, Morgan B, Bergenstal R, Cuddihy R (2008) Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technol Ther 10(3):149–159

    Article  CAS  Google Scholar 

  464. Rodbard D (2009) Display of glucose distributions by date, time of day, and day of week New and improved methods. J Diabetes Sci Technol 3(6):1388–1394

    Article  Google Scholar 

  465. Mazze RS, Strock E, Wesley D, Borgman S, Morgan B, Bergenstal R, Cuddihy R (1987) Ambulatory glucose profile representation of verified self-monitored blood glucose data. Diabetes Care 10(1):111–117

    Article  CAS  Google Scholar 

  466. Kovatchev B (2015) Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring. Diabetes Technol Ther 17(3):1–10

    Article  CAS  Google Scholar 

  467. Lodwig V, Kulzer B, Schnell O, Heinemann L (2014) What are the next steps in continuous glucose monitoring? J Diabetes Sci Technol 8(2):397–402

    Article  Google Scholar 

  468. Mastrototaro J (2000) The MiniMed continuous glucose monitoring system. Diabetes Technol Ther 2(S1):S13–S18

    Article  Google Scholar 

  469. Clinical and Laboratory Standards Institute (CLSI) (2008) Performance metrics for continuous interstitial glucose monitoring. Approved guideline. POCT 05-A

    Google Scholar 

  470. Guidance for Industry and Food and Drug Administration Staff (2012) The content of investigational device exemption (IDE) and premarket approval (PMA)—applications for artificial pancreas device systems. http://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm259305.pdf

  471. Wentholt IM, Hoekstra JB, DeVries JH (2007) Continuous glucose monitors the long-awaited watch dogs? Diabetes Technol Ther 9(5):399–409

    Article  CAS  Google Scholar 

  472. Zisser HC, Bailey TS, Schwartz S, Ratner RE, Wise J (2009) Accuracy of the SEVEN continuous glucose monitoring system comparison with frequently sampled venous glucose measurements. J Diabetes Sci Technol 3(5):1146–1154

    Article  Google Scholar 

  473. Bailey T, Zisser H, Chang A (2009) New features and performance of a next-generation SEVEN-day continuous glucose monitoring system with short lag time. Diabetes Technol Ther 11(12):749–755

    Article  CAS  Google Scholar 

  474. Pickup JC, Freeman SC, Sutton AJ (2011) Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose meta-analysis of randomised controlled trials using individual patient data. BMJ 343:d3805

    Article  Google Scholar 

  475. Zijlstra E, Heise T, Nosek L, Heinemann L, Heckermann S (2013) Continuous glucose monitoring quality of hypoglycaemia detection. Diabetes Obes Metab 15(2):130–135

    Article  CAS  Google Scholar 

  476. Lodwig V, Kulzer B, Schnell O, Heinemann L (2014) Current trends in continuous glucose monitoring. J Diabetes Sci Technol 8(2):390–396

    Article  Google Scholar 

  477. Damiano ER, El-Khatib FH, Zheng H, Nathan DM, Russell SJ (2013) A comparative effectiveness analysis of three continuous glucose monitors. Diabetes Care 36(2):251–259

    Article  CAS  Google Scholar 

  478. Luijf YM, Mader JK, Doll W, Pieber T, Farret A, Place J, Renard E, Devries JH (2013) Accuracy and reliability of continuous glucose monitoring systems. A head-to-head comparison. Diabetes Technol Ther 5(8):722–727

    Google Scholar 

  479. Garg SK, Smith J, Beatson C, Lopez-Baca B, Voelmle M, Gottlieb A (2009) Comparison of accuracy and safety of the SEVEN and the navigator continuous glucose monitoring systems. Diabetes Technol Ther 11(2):65–72

    Article  CAS  Google Scholar 

  480. Weinstein RL, Schwartz SL, Brazg RL, Bugler JR, Peyser TA, McGarraugh GV (2007) Accuracy of the 5-day FreeStyle Navigator Continuous Glucose Monitoring System comparison with frequent laboratory reference measurements. Diabetes Care 30(5):1125–1130

    Article  CAS  Google Scholar 

  481. Hermanides J, Phillip M, DeVries JH (2011) Current application of continuous glucose monitoring in the treatment of diabetes pros and cons. Diabetes Care 34(Suppl 2):S197–S201

    Article  Google Scholar 

  482. Ramchandani N, Arya S, Ten S, Bhandari S (2011) Real-life utilization of real-time continuous glucose monitoring the complete picture. J Diabetes Sci Technol 5(4):860–870

    Article  Google Scholar 

  483. Kropff J, Bruttomesso D, Doll W, Farret A, Galasso S, Luijf YM, Mader JK, Place J, Boscari F, Pieber TR, Renard E, DeVries JH (2015) Accuracy of two continuous glucose monitoring systems. A head-to-head comparison under clinical research centre and daily life conditions. Diabetes Obes Metab 17(4):343–349

    Article  CAS  Google Scholar 

  484. Bay C, Kristensen PL, Pedersen-Bjergaard U, Tarnow L, Thorsteinsson B (2013) Nocturnal continuous glucose monitoring: accuracy and reliability of hypoglycemia detection in patients with type 1 diabetes at high risk of severe hypoglycemia. Diabetes Technol Ther 15(5):371–377

    Article  CAS  Google Scholar 

  485. Mensh BD, Wisniewski NA, Neil BM, Burnett DR (2013) Susceptibility of interstitial continuous glucose monitor performance to sleeping position. J Diabetes Sci Technol 7(4):863–870

    Article  Google Scholar 

  486. Link M, Schmid C, Pleus S, Baumstark A, Rittmeyer D, Haug C, Freckmann G (2015) System accuracy evaluation of four systems for self-monitoring of blood glucose following ISO 15197 using a glucose oxidase and a hexokinase-based comparison method. J Diabetes Sci Technol 9(5):1041–1050

    Article  Google Scholar 

  487. Klaff LJ, Brazg R, Hughes K, Tideman AM, Schachner HC, Stenger P, Pardo S, Dunne N, Parkes JL (2015) Accuracy evaluation of contour next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting. Diabetes Technol Ther 17(1):8–15

    Article  CAS  Google Scholar 

  488. Freckmann G, Pleus S, Link M, Baumstark A, Schmid C, Högel J, Haug C (2015) Accuracy evaluation of four blood glucose monitoring systems in unaltered blood samples in the low glycemic range and blood samples in the concentration range defined by ISO 15197. Diabetes Technol Ther 17(9):625–634

    Article  CAS  Google Scholar 

  489. Dunne N, Viggiani MT, Pardo S, Robinson C, Parkes JL (2015) Accuracy evaluation of CONTOURPLUS compared with four blood glucose monitoring systems. Diabetes Ther 6(3):377–388

    Article  CAS  Google Scholar 

  490. Demircik F, Ramljak S, Hermanns I, Pfützner A, Pfützner A (2015) Evaluation of hematocrit interference with MyStar extra and seven competitive devices. J Diabetes Sci Technol 9(2):262–267

    Article  Google Scholar 

  491. Pfuetzner A, Hengesbach C, Demircik F, Schipper C, Forst T, Musholt PB (2014) Performance of blood glucose meters in compliance with current and future clinical ISO15197 accuracy criteria. Curr Med Res Opin 30(2):185–190

    Article  CAS  Google Scholar 

  492. Huang TY, Chang HW, Tsao MF, Chuang SM, Ni CC, Sue JW, Lin HC, Hsu CT (2014) Evaluation of accuracy of FAD-GDH- and mutant Q-GDH-based blood glucose monitors in multi-patient populations. Clin Chim Acta 433:28–33

    Article  CAS  Google Scholar 

  493. Hsu CT, Wu MH, Kuo CY, Zen JM (2014) Testing quality of a self-monitoring blood glucose sensor with an auto-coding mechanism when used by patients versus technicians. Clin Chim Acta 437:62–65

    Article  CAS  Google Scholar 

  494. Halldorsdottir S, Warchal-Windham ME, Wallace JF, Pardo S, Parkes JL, Simmons DA (2013) Accuracy evaluation of five blood glucose monitoring systems: the North American comparator trial. J Diabetes Sci Technol 7(5):1294–1304

    Article  Google Scholar 

  495. Brazg R, Klaff LJ, Parkin CG (2013) Performance variability of seven commonly used self-monitoring of blood glucose systems: clinical considerations for patients and providers. J Diabetes Sci Technol 7(1):144–152

    Article  Google Scholar 

  496. Teodorczyk M, Cardosi M, Setford S (2012) Hematocrit compensation in electrochemical blood glucose monitoring systems. J Diabetes Sci Technol 6(3):648–654

    Article  Google Scholar 

  497. Tack C, Pohlmeier H, Behnke T, Schmid V, Grenningloh M, Forst T, Pfützner A (2012) Accuracy evaluation of five blood glucose monitoring systems obtained from the pharmacy: a European multicenter study with 453 subjects. Diabetes Technol Ther 14(4):330–337

    Article  CAS  Google Scholar 

  498. Baumstark A, Pleus S, Schmid C, Link M, Haug C, Freckmann G (2012) Lot-to-lot variability of test strips and accuracy assesment of systems for self-monitoring of blood glucose according to ISO 15197. J Diabetes Sci Technol 6(5):1076–1086

    Article  Google Scholar 

  499. Ceriotti F, Kaczmarek E, Guerra E, Mastrantonio F, Lucarelli F, Valgimigli F, Mosca A (2015) Comparative performance assessment of point-of-care testing devices for measuring glucose and ketones at the patient bedside. J Diabetes Sci Technol 9(2):268–277

    Article  Google Scholar 

  500. Dietzen DJ, Wilhite TR, Rasmussen M, Sheffield M (2013) Point-of-care glucose analysis in neonates using modified quinoprotein glucose dehydrogenase. Diabetes Technol Ther 15(11):923–928

    Article  CAS  Google Scholar 

  501. Zueger T, Schuler V, Stettler C, Diem P, Christ ER (2012) Assessment of three frequently used blood glucose monitoring devices in clinical routine. Swiss Med Wkly 142:w13631

    Google Scholar 

  502. Robinson C, Sharp P (2012) Tighter accuracy standards within point-of-care blood glucose monitoring: how six commonly used systems compare. J Diabetes Sci Technol 6(3):547–554

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the contribution of K. Berndt with respect to payer requirements. Further, the authors gratefully acknowledge critical proofreading by N. Carrington, G. Freckmann, R. Heitlinger, A. Rügner, G. Schmelzeisen-Redeker, M. Schoemaker, and D. Urošević.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Ocvirk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ocvirk, G., Buck, H., DuVall, S.H. (2016). Electrochemical Glucose Biosensors for Diabetes Care. In: Matysik, FM. (eds) Trends in Bioelectroanalysis. Bioanalytical Reviews, vol 6. Springer, Cham. https://doi.org/10.1007/11663_2016_3

Download citation

Publish with us

Policies and ethics