Skip to main content

Novel Electrochemical DNA Biosensors as Tools for Investigation and Detection of DNA Damage

  • Chapter
  • First Online:
Trends in Bioelectroanalysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 6))

Abstract

Supramolecular interactions of various organic xenobiotic compounds with deoxyribonucleic acid (DNA) are among the most important aspects of biological studies in clinical analysis, drug discovery, and pharmaceutical development processes. In recent years, there has been a growing interest in the electrochemical investigation of interactions between a studied analyte and DNA. Observing the pre- and post-electrochemical signals of DNA or monitoring its interaction with xenobiotics provides good evidence for the interaction mechanism to be elucidated. Such interaction can also be used for sensitive determination of these compounds. This short review summarizes our results obtained during the last 5 years in the field of novel electrochemical DNA biosensors utilizing carbon-based transducers as substrates for immobilization of DNA. It should provide evidence that the electrochemical approach (employing simple, fast, sensitive, and inexpensive DNA biosensors as tools for investigation and detection of DNA damage) brings new insight into human health protection or rational drug design and leads to further understanding of the interaction mechanism between xenobiotic compounds and DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

2-Aminoanthracene

Ag/AgCl:

Silver/silver chloride reference electrode

CFE:

Microcrystalline natural graphite–polystyrene composite film-modified electrode

CV:

Cyclic voltammetry

DNA:

Deoxyribonucleic acid

DPV:

Differential pulse voltammetry

dsDNA:

Double-stranded deoxyribonucleic acid

EIS:

Electrochemical impedance spectroscopy

GCE:

Glassy carbon electrode

IARC:

International Agency for Research on Cancer

NTMA:

4-Nitro-3-(trifluoromethyl)aniline

PB:

Phosphate buffer

phen:

1,10-Phenanthroline

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RSS:

Reactive sulfur species

SPCE:

Screen-printed carbon electrode

SWCNT:

Single-walled carbon nanotube

SWV:

Square-wave voltammetry

References

  1. Paleček E, Bartošík M (2012) Electrochemistry of nucleic acids. Chem Rev 112(6):3427–3481. doi:10.1021/cr200303p

    Article  Google Scholar 

  2. Palecek E, Fojta M (2001) Detecting DNA hybridization and damage. Anal Chem 73(3):74A–83A. doi:10.1021/ac0123936

    CAS  Google Scholar 

  3. Fojta M (2002) Electrochemical sensors for DNA interactions and damage. Electroanalysis 14(21):1449–1463. doi:10.1002/1521-4109(200211)14:21<1449::aid-elan1449>3.0.co;2-z

    Article  CAS  Google Scholar 

  4. Erdem A (2007) Nanomaterial-based electrochemical DNA sensing strategies. Talanta 74(3):318–325. doi:10.1016/j.talanta.2007.10.012

    Article  CAS  Google Scholar 

  5. Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anwar MA, Khalid AM (2005) Electrochemical approach of anticancer drugs–DNA interaction. J Pharm Biomed Anal 37(2):205–217. doi:10.1016/j.jpba.2004.10.037

    Article  CAS  Google Scholar 

  6. Erdem A, Muti M, Papakonstantinou P, Canavar E, Karadeniz H, Congur G, Sharma S (2012) Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C–DNA interaction. Analyst 137(9):2129–2135. doi:10.1039/c2an16011k

    Article  CAS  Google Scholar 

  7. Fojta M (2005) Detecting DNA damage with electrodes. In: Paleček E, Scheller F, Wang J (eds) Electrochemistry of nucleic acids and proteins – towards electrochemical sensors for genomics and proteomics. Elsevier, Amsterdam, pp 385–431

    Chapter  Google Scholar 

  8. Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C, Chicharro M, Farias PAM, Valera FS, Grant DH, Ozsoz M, Flair MN (1997) DNA electrochemical biosensors for environmental monitoring. A review. Anal Chim Acta 347(1–2):1–8. doi:10.1016/s0003-2670(96)00598-3

    Article  CAS  Google Scholar 

  9. Mascini M, Palchetti I, Marrazza G (2001) DNA electrochemical biosensors. Fresenius J Anal Chem 369(1):15–22. doi:10.1007/s002160000629

    Article  CAS  Google Scholar 

  10. Gooding JJ (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14(17):1149–1156. doi:10.1002/1521-4109(200209)14:17<1149::aid-elan1149>3.0.co;2-8

    Article  CAS  Google Scholar 

  11. Tosar JP, Brañas G, Laíz J (2010) Electrochemical DNA hybridization sensors applied to real and complex biological samples. Biosens Bioelectron 26(4):1205–1217. doi:10.1016/j.bios.2010.08.053

    Article  CAS  Google Scholar 

  12. Labuda J, Oliveira-Brett AM, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Paleček E, Wang J (2010) Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC technical report). Pure Appl Chem 82(5):1161–1187. doi:10.1351/pac-rep-09-08-16

    Article  CAS  Google Scholar 

  13. Šimková D, Labuda J (2011) Electrochemical DNA biosensors and flow-through analysis. A review. Curr Anal Chem 7(1):2–7. doi:10.2174/157341111793797662

    Article  Google Scholar 

  14. Chang HX, Wang Y, Li JH (2011) Electrochemical DNA sensors: from nanoconstruction to biosensing. Curr Org Chem 15(4):506–517. doi:10.2174/138527211794474500

    Article  CAS  Google Scholar 

  15. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707. doi:10.1021/ac202878q

    Article  CAS  Google Scholar 

  16. Ozsoz M (2012) Electrochemical DNA biosensors. Pan Stanford, Singapore. doi:10.4032/9789814303989

  17. Vyskočil V, Blašková M, Hájková A, Horáková E, Krejčová Z, Stávková K, Wang J (2012) Electrochemical DNA biosensors – useful diagnostic tools for the detection of damage to DNA caused by organic xenobiotics (a review). In: Kalcher K, Metelka R, Švancara I, Vytřas K (eds) Sensing in electroanalysis, vol 7. University Press Centre, Pardubice, pp 141–162

    Google Scholar 

  18. Labuda J, Vyskocil V (2014) DNA/electrode interface: detection of damage to DNA using DNA-modified electrodes. In: Kreysa G, Ota K, Savinell RF (eds) Encyclopedia of applied electrochemistry. Springer, New York, pp 346–350. doi:10.1007/978-1-4419-6996-5_259

    Google Scholar 

  19. Abu-Salah KM, Zourob MM, Mouffouk F, Alrokayan SA, Alaamery MA, Ansari AA (2015) DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors 15(6):14539–14568. doi:10.3390/s150614539

    Article  CAS  Google Scholar 

  20. Fojta M, Daňhel A, Havran L, Vyskočil V (2015) Recent progress in electrochemical sensors and assays for DNA damage and repair. Trends Anal Chem. doi:10.1016/j.trac.2015.11.018

    Google Scholar 

  21. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214. doi:10.1096/fj.02-0752rev

    Article  CAS  Google Scholar 

  22. Barzilai A, Yamamoto KI (2004) DNA damage responses to oxidative stress. DNA Repair 3(8–9):1109–1115. doi:10.1016/j.dnarep.2004.03.002

    Article  CAS  Google Scholar 

  23. Friedberg EC (2003) DNA damage and repair. Nature 421(6921):436–440. doi:10.1038/nature01408

    Article  Google Scholar 

  24. Paleček E, Fojta M, Tomschik M, Wang J (1998) Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron 13(6):621–628. doi:10.1016/S0956-5663(98)00017-7

    Article  Google Scholar 

  25. Vyskočil V, Labuda J, Barek J (2010) Voltammetric detection of damage to DNA caused by nitro derivatives of fluorene using an electrochemical DNA biosensor. Anal Bioanal Chem 397(1):233–241. doi:10.1007/s00216-010-3517-y

    Article  Google Scholar 

  26. Oliveira-Brett AM, Vivan M, Fernandes IR, Piedade JAP (2002) Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta 56(5):959–970. doi:10.1016/s0039-9140(01)00656-7

    Article  CAS  Google Scholar 

  27. Abreu FC, Goulart MOF, Oliveira-Brett AM (2002) Detection of the damage caused to DNA by niclosamide using an electrochemical DNA-biosensor. Biosens Bioelectron 17(11–12):913–919. doi:10.1016/s0956-5663(02)00082-9

    Article  CAS  Google Scholar 

  28. Ni YN, Wang P, Kokot S (2012) Voltammetric investigation of DNA damage induced by nitrofurazone and short-lived nitro-radicals with the use of an electrochemical DNA biosensor. Biosens Bioelectron 38(1):245–251. doi:10.1016/j.bios.2012.05.034

    Article  CAS  Google Scholar 

  29. Weng J, Zhang J, Li H, Sun L, Lin C, Zhang Q (2008) Label-free DNA sensor by boron-doped diamond electrode using an AC impedimetric approach. Anal Chem 80(18):7075–7083. doi:10.1021/ac800610z

    Article  CAS  Google Scholar 

  30. Švorc Ľ, Jambrec D, Vojs M, Barwe S, Clausmeyer J, Michniak P, Marton M, Schuhmann W (2015) Doping level of boron-doped diamond electrodes controls the grafting density of functional groups for DNA assays. ACS Appl Mater Interfaces 7(34):18949–18956. doi:10.1021/acsami.5b06394

    Article  Google Scholar 

  31. Diculescu VC, Paquim AMC, Oliveira-Brett AM (2005) Electrochemical DNA sensors for detection of DNA damage. Sensors 5(6–10):377–393. doi:10.3390/s5060377

    Article  CAS  Google Scholar 

  32. Vyskočil V, Barek J (2012) Voltammetric DNA biosensor based on a microcrystalline natural graphite–polystyrene composite transducer. Procedia Chem 6:52–59. doi:10.1016/j.proche.2012.10.130

    Article  Google Scholar 

  33. Šmejkalová H, Vyskočil V (2014) Large-surface carbon film electrode – a simple sensor for voltammetric determination of electrochemically reducible organic compounds. Chem Listy 108(3):264–270

    Google Scholar 

  34. Yosypchuk B, Barek J, Fojta M (2006) Carbon powder based films on traditional solid electrodes as an alternative to disposable electrodes. Electroanalysis 18(11):1126–1130. doi:10.1002/elan.200503488

    Article  CAS  Google Scholar 

  35. Hlavata L, Benikova K, Vyskocil V, Labuda J (2012) Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensor based on low molecular weight DNA and screen-printed carbon electrode. Electrochim Acta 71:134–139. doi:10.1016/j.electacta.2012.03.119

    Article  CAS  Google Scholar 

  36. Lucarelli F, Marrazza G, Turner APF, Mascini M (2004) Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens Bioelectron 19(6):515–530. doi:10.1016/s0956-5663(03)00256-2

    Article  CAS  Google Scholar 

  37. Kerman K, Kobayashi M, Tamiya E (2004) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15(2):R1–R11. doi:10.1088/0957-0233/15/2/r01

    Article  CAS  Google Scholar 

  38. Zima J, Švancara I, Barek J, Vytřas K (2009) Recent advances in electroanalysis of organic compounds at carbon paste electrodes. Crit Rev Anal Chem 39(3):204–227. doi:10.1080/10408340903011853

    Article  CAS  Google Scholar 

  39. Wang J, Cai XH, Jonsson C, Balakrishnan M (1996) Adsorptive stripping potentiometry of DNA at electrochemically pretreated carbon paste electrodes. Electroanalysis 8(1):20–24. doi:10.1002/elan.1140080105

    Article  CAS  Google Scholar 

  40. Wang J, Cai XH, Rivas G, Shiraishi H, Dontha N (1997) Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosens Bioelectron 12(7):587–599. doi:10.1016/s0956-5663(96)00076-0

    Article  CAS  Google Scholar 

  41. Hájková A, Barek J, Vyskočil V (2015) Voltammetric determination of 2-aminofluoren-9-one and investigation of its interaction with DNA on a glassy carbon electrode. Electroanalysis 27(1):101–110. doi:10.1002/elan.201400427

    Article  Google Scholar 

  42. Blašková M, Vyskočil V (2014) Simple electrochemical biosensor for comprehensive detection of DNA damage by chemical carcinogens. Chem Listy 108(S4):S211–S215

    Google Scholar 

  43. Stávková K, Vyskočil V (2014) Electrochemical research on supramolecular interactions of DNA with genotoxic 2-nitrofluorene. Chem Listy 108(S4):S262–S265

    Google Scholar 

  44. Oliveira-Brett AM, Serrano SHP, Gutz I, La-Scalea MA, Cruz ML (1997) Voltammetric behavior of nitroimidazoles at a DNA-biosensor. Electroanalysis 9(14):1132–1137. doi:10.1002/elan.1140091419

    Article  CAS  Google Scholar 

  45. Oliveira-Brett AM, Macedo TRA, Raimundo D, Marques MH, Serrano SHP (1998) Voltammetric behaviour of mitoxantrone at a DNA-biosensor. Biosens Bioelectron 13(7–8):861–867. doi:10.1016/s0956-5663(98)00053-0

    Article  Google Scholar 

  46. Labuda J, Bučková M, Vaníčková M, Mattusch J, Wennrich R (1999) Voltammetric detection of the DNA interaction with copper complex compounds and damage to DNA. Electroanalysis 11(2):101–107. doi:10.1002/(sici)1521-4109(199902)11:2<101::aid-elan101>3.0.co;2-v

    Article  CAS  Google Scholar 

  47. Hlavatá L, Vyskočil V, Beníková K, Borbélyová M, Labuda J (2014) DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Cent Eur J Chem 12(5):604–611. doi:10.2478/s11532-014-0516-4

    Article  Google Scholar 

  48. Hashimoto K, Ito K, Ishimori Y (1994) Novel DNA sensor for electrochemical gene detection. Anal Chim Acta 286(2):219–224. doi:10.1016/0003-2670(94)80163-0

    Article  CAS  Google Scholar 

  49. Pang DW, Abruña HD (1998) Micromethod for the investigation of the interactions between DNA and redox-active molecules. Anal Chem 70(15):3162–3169. doi:10.1021/ac980211a

    Article  CAS  Google Scholar 

  50. Wang SF, Xie F, Hu RF, Cai HC (2006) The determination of nonelectroactive anticancer drug 6-thioguanine on DNA-modified gold electrode. Anal Lett 39(6):1041–1052. doi:10.1080/00032710600620328

    Article  CAS  Google Scholar 

  51. Paleček E, Boublíková P, Jelen F (1986) Cyclic voltammetry of nucleic acids and determination of submicrogram quantities of deoxyribonucleic acids by adsorptive stripping voltammetry. Anal Chim Acta 187:99–107. doi:10.1016/s0003-2670(00)82902-5

    Article  Google Scholar 

  52. Paleček E (1996) From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis 8(1):7–14. doi:10.1002/elan.1140080103

    Article  Google Scholar 

  53. Fojta M, Paleček E (1997) Supercoiled DNA-modified mercury electrode: a highly sensitive tool for the detection of DNA damage. Anal Chim Acta 342(1):1–12. doi:10.1016/s0003-2670(96)00551-x

    Article  CAS  Google Scholar 

  54. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14. doi:10.1002/elan.200403113

    Article  CAS  Google Scholar 

  55. Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1(11):1036–1043. doi:10.1002/smll.200500214

    Article  CAS  Google Scholar 

  56. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25(5):480–489. doi:10.1016/j.trac.2005.11.008

    Article  CAS  Google Scholar 

  57. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385(3):452–468. doi:10.1007/s00216-006-0314-8

    Article  CAS  Google Scholar 

  58. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19(20):3214–3228. doi:10.1002/adma.200700665

    Article  CAS  Google Scholar 

  59. Guo SJ, Wang EK (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192. doi:10.1016/j.aca.2007.07.054

    Article  CAS  Google Scholar 

  60. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuators B 123(2):1195–1205. doi:10.1016/j.snb.2006.11.016

    Article  CAS  Google Scholar 

  61. Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036. doi:10.1002/elan.200900571

    Article  CAS  Google Scholar 

  62. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648. doi:10.1016/j.bios.2011.05.039

    Article  CAS  Google Scholar 

  63. Pumera M (2011) Graphene in biosensing. Mater Today 14(7–8):308–315. doi:10.1016/S1369-7021(11)70160-2

    Article  CAS  Google Scholar 

  64. Galandova J, Ziyatdinova G, Labuda J (2008) Disposable electrochemical biosensor with multiwalled carbon nanotubes–chitosan composite layer for the detection of deep DNA damage. Anal Sci 24(6):711–716. doi:10.2116/analsci.24.711

    Article  CAS  Google Scholar 

  65. Rusling JF (2005) Sensors for genotoxicity and oxidized DNA. In: Paleček E, Scheller F, Wang J (eds) Electrochemistry of nucleic acids and proteins – towards electrochemical sensors for genomics and proteomics. Elsevier, Amsterdam, pp 433–450

    Chapter  Google Scholar 

  66. Blašková M (2012) Novel electrochemical biosensor for the detection of DNA damage caused by chemical carcinogens. B.Sc. thesis, Charles University in Prague, Prague

    Google Scholar 

  67. Guan JG, Miao YQ, Zhang QJ (2004) Impedimetric biosensors. J Biosci Bioeng 97(4):219–226. doi:10.1016/s1389-1723(04)70195-4

    Article  CAS  Google Scholar 

  68. Ziyatdinova G, Labuda J (2011) Complex electrochemical and impedimetric evaluation of DNA damage by using DNA biosensor based on a carbon screen-printed electrode. Anal Methods 3(12):2777–2782. doi:10.1039/c1ay05403a

    Article  CAS  Google Scholar 

  69. Paleček E, Jelen F (2005) Electrochemistry of nucleic acids. In: Paleček E, Scheller F, Wang J (eds) Electrochemistry of nucleic acids and proteins – towards electrochemical sensors for genomics and proteomics. Elsevier, Amsterdam, pp 74–174

    Google Scholar 

  70. Oliveira-Brett AM, Matysik FM (1997) Voltammetric and sonovoltammetric studies on the oxidation of thymine and cytosine at a glassy carbon electrode. J Electroanal Chem 429(1–2):95–99. doi:10.1016/S0022-0728(96)05018-8

    Article  CAS  Google Scholar 

  71. Oliveira-Brett AM, Piedade JAP, Silva LA, Diculescu VC (2004) Voltammetric determination of all DNA nucleotides. Anal Biochem 332(2):321–329. doi:10.1016/j.ab.2004.06.021

    Article  CAS  Google Scholar 

  72. Švorc Ľ, Kalcher K (2014) Modification-free electrochemical approach for sensitive monitoring of purine DNA bases: simultaneous determination of guanine and adenine in biological samples using boron-doped diamond electrode. Sens Actuators B 194:332–342. doi:10.1016/j.snb.2013.12.104

    Article  Google Scholar 

  73. Paleček E (2002) Past, present and future of nucleic acids electrochemistry. Talanta 56(5):809–819. doi:10.1016/s0039-9140(01)00649-x

    Article  Google Scholar 

  74. Oliveira-Brett AM, Piedade JAP, Serrano SHP (2000) Electrochemical oxidation of 8-oxoguanine. Electroanalysis 12(12):969–973. doi:10.1002/1521-4109(200008)12:12<969::aid-elan969>3.0.co;2-o

    Article  Google Scholar 

  75. Oliveira SCB, Corduneanu O, Oliveira-Brett AM (2008) In situ evaluation of heavy metal–DNA interactions using an electrochemical DNA biosensor. Bioelectrochemistry 72(1):53–58. doi:10.1016/j.bioelechem.2007.11.004

    Article  CAS  Google Scholar 

  76. Galandová J, Ovádeková R, Ferancová A, Labuda J (2009) Disposable DNA biosensor with the carbon nanotubes–polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines. Anal Bioanal Chem 394(3):855–861. doi:10.1007/s00216-009-2740-x

    Article  Google Scholar 

  77. Labuda J, Ovádeková R, Galandová J (2009) DNA-based biosensor for the detection of strong damage to DNA by the quinazoline derivative as a potential anticancer agent. Microchim Acta 164(3–4):371–377. doi:10.1007/s00604-008-0068-4

    Article  CAS  Google Scholar 

  78. Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J Am Chem Soc 111(24):8901–8911. doi:10.1021/ja00206a020

    Article  CAS  Google Scholar 

  79. Hájková A, Vyskočil V (2014) Novel voltammetric biosensor for the detection of DNA damage caused by amino derivatives of fluorene. In: Hrouzková S, Májek P (eds) Analytical chemistry in practice 2014, Bratislava, 1–4 June 2014, pp 75–76

    Google Scholar 

  80. Vyskočil V, Labuda J, Barek J (2009) Damaging effects of genotoxic fluorene derivatives on DNA detected voltammetrically using an electrochemical DNA biosensor. In: Hudská V (ed) Prague–Dresden electrochemical seminar, Červený Hrádek, Jirkov, 23–25 Nov 2009, pp 32–33

    Google Scholar 

  81. Jurečková Z (2013) Novel electrochemical biosensor for the detection of DNA damage based on a large-surface carbon film electrode. B.Sc. thesis, Charles University in Prague, Prague

    Google Scholar 

  82. Hrochová Z (2013) Novel voltammetric DNA biosensor for the detection of the DNA damage caused by oncological drugs. B.Sc. thesis, Charles University in Prague, Prague

    Google Scholar 

  83. Jurečková Z (2015) Detection of oxidative stress using electrochemical DNA biosensors. M.Sc. thesis, Charles University in Prague, Prague

    Google Scholar 

  84. Schärer OD (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed 42(26):2946–2974. doi:10.1002/anie.200200523

    Article  Google Scholar 

  85. Turesky RJ (2002) Heterocyclic aromatic amine metabolism, DNA adduct formation, mutagenesis, and carcinogenesis. Drug Metab Rev 34(3):625–650. doi:10.1081/dmr-120005665

    Article  CAS  Google Scholar 

  86. Speit G, Henderson L (2005) Review of the in vivo genotoxicity tests performed with styrene. Mutat Res Rev Mutat Res 589(1):67–79. doi:10.1016/j.mrrev.2004.10.001

    Article  CAS  Google Scholar 

  87. Zhang Y, Hu NF (2007) Cyclic voltammetric detection of chemical DNA damage induced by styrene oxide in natural dsDNA layer-by-layer films using methylene blue as electroactive probe. Electrochem Commun 9(1):35–41. doi:10.1016/j.elecom.2006.08.032

    Article  CAS  Google Scholar 

  88. Liao TL, Wang YF, Zhou XB, Zhang Y, Liu XH, Du J, Li XJ, Lu XQ (2010) Detection of DNA damage induced by styrene oxide in dsDNA layer-by-layer films using adriamycin as electroactive probe. Colloids Surf B 76(1):334–339. doi:10.1016/j.colsurfb.2009.11.016

    Article  CAS  Google Scholar 

  89. Zu Y, Hu NF (2009) Electrochemical detection of DNA damage induced by in situ generated styrene oxide through enzyme reactions. Electrochem Commun 11(10):2068–2070. doi:10.1016/j.elecom.2009.08.055

    Article  CAS  Google Scholar 

  90. Vodicka P, Koskinen M, Arand M, Oesch F, Hemminki K (2002) Spectrum of styrene-induced DNA adducts: the relationship to other biomarkers and prospects in human biomonitoring. Mutat Res Rev Mutat Res 511(3):239–254. doi:10.1016/s1383-5742(02)00012-1

    Article  CAS  Google Scholar 

  91. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20(7):933–956. doi:10.1016/0891-5849(95)02227-9

    Article  CAS  Google Scholar 

  92. Ohshima H, Yoshie Y, Auriol S, Gilibert I (1998) Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic Biol Med 25(9):1057–1065. doi:10.1016/s0891-5849(98)00141-5

    Article  CAS  Google Scholar 

  93. Johnson MK, Loo G (2000) Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat Res DNA Repair 459(3):211–218. doi:10.1016/s0921-8777(99)00074-9

    Article  CAS  Google Scholar 

  94. Labuda J, Bučková M, Heilerová L, Šilhár S, Štepánek I (2003) Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor. Anal Bioanal Chem 376(2):168–173. doi:10.1007/s00216-003-1884-3

    CAS  Google Scholar 

  95. Korbut O, Bučková M, Labuda J, Gründler P (2003) Voltammetric detection of antioxidative properties of flavonoids using electrically heated DNA modified carbon paste electrode. Sensors 3(1):1–10. doi:10.3390/s30100001

    Article  CAS  Google Scholar 

  96. Sassolas A, Prieto-Simón B, Marty JL (2012) Biosensors for pesticide detection: new trends. Am J Anal Chem 3(3):210–232. doi:10.4236/ajac.2012.33030

    Article  CAS  Google Scholar 

  97. Nowicka AM, Kowalczyk A, Stojek Z, Hepel M (2010) Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophys Chem 146(1):42–53. doi:10.1016/j.bpc.2009.10.003

    Article  CAS  Google Scholar 

  98. Erdem A, Ozsoz M (2002) Electrochemical DNA biosensors based on DNA–drug interactions. Electroanalysis 14(14):965–974. doi:10.1002/1521-4109(200208)14:14<965::aid-elan965>3.0.co;2-u

    Article  CAS  Google Scholar 

  99. Graves DE, Velea LM (2000) Intercalative binding of small molecules to nucleic acids. Curr Org Chem 4(9):915–929. doi:10.2174/1385272003375978

    Article  CAS  Google Scholar 

  100. Belmont P, Bosson J, Godet T, Tiano M (2007) Acridine and acridone derivatives, anticancer properties and synthetic methods: where are we now? Anticancer Agents Med Chem 7(2):139–169. doi:10.2174/187152007780058669

    Article  CAS  Google Scholar 

  101. Wheate NJ, Brodie CR, Collins JG, Kemp S, Aldrich-Wright JR (2007) DNA intercalators in cancer therapy: organic and inorganic drugs and their spectroscopic tools of analysis. Mini Rev Med Chem 7(6):627–648. doi:10.2174/138955707780859413

    Article  CAS  Google Scholar 

  102. Crenshaw JM, Graves DE, Denny WA (1995) Interactions of acridine antitumor agents with DNA: binding energies and groove preferences. Biochemistry 34(41):13682–13687. doi:10.1021/bi00041a050

    Article  CAS  Google Scholar 

  103. Farias PAM, Wagener ADR, Castro AA, Bastos MBR (2005) Adsorptive stripping voltammetric behavior of acridine orange at the static mercury drop electrode. Anal Lett 38(10):1601–1610. doi:10.1081/al-200065796

    Article  CAS  Google Scholar 

  104. Ferancová A, Bucková M, Korgová E, Korbut O, Gründler P, Wärnmark I, Štepán R, Barek J, Zima J, Labuda J (2005) Association interaction and voltammetric determination of 1-aminopyrene and 1-hydroxypyrene at cyclodextrin and DNA based electrochemical sensors. Bioelectrochemistry 67(2):191–197. doi:10.1016/j.bioelechem.2004.06.007

    Article  Google Scholar 

  105. Blašková M, Hájková A, Vyskočil V (2015) Voltammetric determination of anthracene using a DNA-modified glassy carbon electrode. Chem Listy 109(3):235–240

    Google Scholar 

Download references

Acknowledgments

This publication originated in the framework of the Specific University Research (SVV). V.V. thanks the Grant Agency of the Czech Republic (Project GP13-23337P), and A.H. thanks the Grant Agency of the Charles University in Prague (Project GAUK 430214/2014/B-CH/PrF) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlastimil Vyskočil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Switzerland

About this chapter

Cite this chapter

Vyskočil, V., Hájková, A. (2016). Novel Electrochemical DNA Biosensors as Tools for Investigation and Detection of DNA Damage. In: Matysik, FM. (eds) Trends in Bioelectroanalysis. Bioanalytical Reviews, vol 6. Springer, Cham. https://doi.org/10.1007/11663_2015_5002

Download citation

Publish with us

Policies and ethics