Skip to main content

Carbon Nanodots: Synthesis, Characterization, and Bioanalytical Applications

  • Chapter
  • First Online:
Measuring Biological Impacts of Nanomaterials

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 5))

Abstract

Carbon dots (CDs) are a new class of carbon-rich nanoparticles with exciting physicochemical properties that make them an interesting material for bioanalytical applications. Since their first description in 2004, several preparation techniques have been developed and described in literature, either starting from carbon raw materials (e.g., soot, graphite) or molecular precursors (e.g., carbohydrates, citric acid). The resulting particles are typically only a few nanometers in size, and their surfaces are decorated with functional groups that are rich in oxygen. The presence of oxygenated functionalities on the surface renders the particles dispersible in water. Carbon dots contain a fraction of carbon atoms that are sp2 hybridized with delocalized electrons on the surface – the basis for the particles’ characteristic photoluminescence. The wavelength of the emitted light is dependent on the wavelength of the excitation source and shows remarkable photostability. Carbon dots are also readily excited in the NIR but still emit visible light (upconverted photoluminescence) which provides significant advantages for in vivo imaging. Nowadays CDs are considered as emerging tools in luminescence-based bioanalytics with their full potential yet to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fortina P et al (2005) Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 23(4):168–173

    Article  CAS  Google Scholar 

  2. Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21(10):1161–1165

    Article  CAS  Google Scholar 

  3. Thurn KT et al (2007) Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2(9):430–441

    Article  CAS  Google Scholar 

  4. Warnement MR, Tomlinson ID, Rosenthal SJ (2007) Fluorescent imaging applications of Quantum Dot probes. Curr Nanosci 3(4):273–284

    Article  CAS  Google Scholar 

  5. Brus L (1991) Quantum crystallites and nonlinear optics. Appl Phys A Mater Sci Process 53(6):465–474

    Article  Google Scholar 

  6. Gao XH et al (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72

    Article  CAS  Google Scholar 

  7. Gerion D et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105(37):8861–8871

    Article  CAS  Google Scholar 

  8. Medintz IL et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  Google Scholar 

  9. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  CAS  Google Scholar 

  10. Clarke SJ et al (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5(5):409–417

    Article  CAS  Google Scholar 

  11. Kroto HW et al (1985) C-60–Buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  12. Greiner NR et al (1988) Diamonds in detonation soot. Nature 333(6172):440–442

    Article  CAS  Google Scholar 

  13. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  14. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev Sci Eng 42(4):481–510

    Article  Google Scholar 

  15. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  16. Xu XY et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    Article  CAS  Google Scholar 

  17. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    Article  CAS  Google Scholar 

  18. Tian L et al (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21(13):2803–2809

    Article  CAS  Google Scholar 

  19. Dong Y et al (2013) Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed 52(30):7800–7804

    Article  CAS  Google Scholar 

  20. da Silva JCGE, Goncalves HMR (2011) Analytical and bioanalytical applications of carbon dots. TrAC Trends Anal Chem 30(8):1327–1336

    Article  CAS  Google Scholar 

  21. Li HT et al (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253

    Article  CAS  Google Scholar 

  22. Luo PJG et al (2013) Carbon “quantum” dots for optical bioimaging. J Mat Chem B 1(16):2116–2127

    Article  CAS  Google Scholar 

  23. Sun YP et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  Google Scholar 

  24. Liu HP, Ye T, Mao CD (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46(34):6473–6475

    Article  CAS  Google Scholar 

  25. Li XY et al (2011) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47(3):932–934

    Article  Google Scholar 

  26. Zheng LY et al (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131(13):4564–4565

    Article  CAS  Google Scholar 

  27. Long YM et al (2012) Shifting and non-shifting fluorescence emitted by carbon nanodots. J Mater Chem 22(13):5917–5920

    Article  CAS  Google Scholar 

  28. Lu J et al (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375

    Article  CAS  Google Scholar 

  29. Bao L et al (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23(48):5801–5806

    Article  CAS  Google Scholar 

  30. Bourlinos AB et al (2008) Surface functionalized carbogenic quantum dots. Small 4(4):455–458

    Article  CAS  Google Scholar 

  31. Bourlinos AB et al (2012) Luminescent surface quaternized carbon dots. Chem Mater 24(1):6–8

    Article  CAS  Google Scholar 

  32. Pan DY et al (2010) Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun 46(21):3681–3683

    Article  CAS  Google Scholar 

  33. Zhou L et al (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48(8):1147–1149

    Article  CAS  Google Scholar 

  34. Deng YH et al (2013) Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chem Commun 49(51):5751–5753

    Article  CAS  Google Scholar 

  35. Li HT et al (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49(2):605–609

    Article  CAS  Google Scholar 

  36. Wang XH et al (2011) Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J Mater Chem 21(8):2445–2450

    Article  CAS  Google Scholar 

  37. He XD et al (2011) Water soluble carbon nanoparticles: hydrothermal synthesis and excellent photoluminescence properties. Colloids Surf B Biointerfaces 87(2):326–332

    Article  CAS  Google Scholar 

  38. Yang ZC et al (2011) Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun 47(42):11615–11617

    Article  CAS  Google Scholar 

  39. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21(23):5563–5565

    Article  CAS  Google Scholar 

  40. Ma Z et al (2012) One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem 36(4):861–864

    Article  CAS  Google Scholar 

  41. Liu CJ et al (2011) One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J Mater Chem 21(35):13163–13167

    Article  CAS  Google Scholar 

  42. Liu CJ et al (2012) Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 33(13):3604–3613

    Article  CAS  Google Scholar 

  43. Liu JM et al (2012) Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 137(11):2637–2642

    Article  CAS  Google Scholar 

  44. Lin Z et al (2012) Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem Commun 48(7):1051–1053

    Article  Google Scholar 

  45. Salinas-Castillo A et al (2013) Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun 49(11):1103–1105

    Article  CAS  Google Scholar 

  46. Puvvada N et al (2012) Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications. Sci Tech Adv Mat 13(4)

    Google Scholar 

  47. Mitra S et al (2012) Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Adv 2(32):12129–12131

    Article  CAS  Google Scholar 

  48. Qu SN et al (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed 51(49):12215–12218

    Article  CAS  Google Scholar 

  49. Du FK et al (2013) Carbon dots-based fluorescent probes for sensitive and selective detection of iodide. Microchimica Acta 180(5–6):453–460

    Article  CAS  Google Scholar 

  50. Jiang J et al (2012) Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun 48(77):9634–9636

    Article  CAS  Google Scholar 

  51. Wang Q et al (2012) Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst 137(22):5392–5397

    Article  CAS  Google Scholar 

  52. Yang YH et al (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48(3):380–382

    Article  CAS  Google Scholar 

  53. Zhu SJ et al (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  CAS  Google Scholar 

  54. Hsu PC, Chang HT (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48(33):3984–3986

    Article  CAS  Google Scholar 

  55. Qu KG et al (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of Iron(III) ions and dopamine. Chem Euro J 19(22):7243–7249

    Article  CAS  Google Scholar 

  56. Zhang YQ et al (2012) One-pot synthesis of N-doped carbon dots with tunable luminescence properties. J Mater Chem 22(33):16714–16718

    Article  CAS  Google Scholar 

  57. Zhou JJ et al (2012) Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 66(1):222–224

    Article  CAS  Google Scholar 

  58. Sahu S et al (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48(70):8835–8837

    Article  CAS  Google Scholar 

  59. Lu WB et al (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of Mercury(II) ions. Anal Chem 84(12):5351–5357

    Article  CAS  Google Scholar 

  60. Hsu PC et al (2012) Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem 14(4):917–920

    Article  CAS  Google Scholar 

  61. Liu S et al (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nano-dots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24(15):2037–2041

    Article  CAS  Google Scholar 

  62. Qiao ZA et al (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46(46):8812–8814

    Article  CAS  Google Scholar 

  63. Li HT et al (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49(26):4430–4434

    Article  CAS  Google Scholar 

  64. Bourlinos AB et al (2008) Photoluminescent carbogenic dots. Chem Mater 20(14):4539–4541

    Article  CAS  Google Scholar 

  65. Zhao QL et al (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118

    Article  CAS  Google Scholar 

  66. Liu RL et al (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48(25):4598–4601

    Article  CAS  Google Scholar 

  67. Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262(5137):1242–1244

    Article  CAS  Google Scholar 

  68. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  69. Fischer SA, Isborn CM, Prezhdo OV (2011) Excited states and optical absorption of small semiconducting clusters: Dopants, defects and charging. Chem Sci 2(3):400–406

    Article  CAS  Google Scholar 

  70. Robertson J (1996) Recombination and photoluminescence mechanism in hydrogenated amorphous carbon. Phys Rev B 53(24):16302–16305

    Article  CAS  Google Scholar 

  71. Yu P et al (2012) Temperature-dependent fluorescence in carbon dots. J Phys Chem C 116(48):25552–25557

    Article  CAS  Google Scholar 

  72. Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47(1):20–30

    Article  CAS  Google Scholar 

  73. Zheng HZ et al (2011) Enhancing the luminescence of carbon dots with a reduction pathway. Chem Commun 47(38):10650–10652

    Article  CAS  Google Scholar 

  74. Pan DY et al (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738

    Article  CAS  Google Scholar 

  75. Shen R et al (2012) Dramatic fluorescence enhancement of bare carbon dots through facile reduction chemistry. ChemPhysChem 13(15):3549–3555

    Article  CAS  Google Scholar 

  76. Zhu BC et al (2013) Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mat Chem C 1(3):580–586

    Article  CAS  Google Scholar 

  77. Bae Y, Myung N, Bard AJ (2004) Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett 4(6):1153–1161

    Article  CAS  Google Scholar 

  78. Ding ZF et al (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571):1293–1297

    Article  CAS  Google Scholar 

  79. Zhu H et al (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120

    Article  CAS  Google Scholar 

  80. Myung N, Ding ZF, Bard AJ (2002) Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett 2(11):1315–1319

    Article  CAS  Google Scholar 

  81. Kim HM, Cho BR (2009) Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc Chem Res 42(7):863–872

    Article  CAS  Google Scholar 

  82. Cao L et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319

    Article  CAS  Google Scholar 

  83. Chen W, Joly AG, McCready DE (2005) Upconversion luminescence from CdSe nanoparticles. J Chem Phys 122(22):224708

    Article  CAS  Google Scholar 

  84. Jaiswal JK et al (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78

    Article  Google Scholar 

  85. Cho SJ et al (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23(4):1974–1980

    Article  CAS  Google Scholar 

  86. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  Google Scholar 

  87. Hardman R (2006) A toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  Google Scholar 

  88. Rosenthal SJ et al (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    Article  CAS  Google Scholar 

  89. Yang ST et al (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113(42):18110–18114

    Article  CAS  Google Scholar 

  90. Zhang LW et al (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228(2):200–211

    Article  CAS  Google Scholar 

  91. Stern ST et al (2008) Induction of autophagy in porcine kidney cells by quantum dots: a common cellular response to nanomaterials? Toxicol Sci 106(1):140–152

    Article  CAS  Google Scholar 

  92. Wang K et al (2013) Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett 8:122–130

    Article  CAS  Google Scholar 

  93. Tao HQ et al (2012) In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2):281–290

    Article  CAS  Google Scholar 

  94. Lutty GA (1978) Acute intravenous toxicity of biological stains, dyes, and other fluorescent substances. Toxicol Appl Pharmacol 44(2):225–249

    Article  CAS  Google Scholar 

  95. Ray SC et al (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113(43):18546–18551

    Article  CAS  Google Scholar 

  96. Zhu SJ et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47(24):6858–6860

    Article  CAS  Google Scholar 

  97. Verma AO et al (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595

    Article  CAS  Google Scholar 

  98. Schmid SL, Carter LL (1990) ATP is required for receptor-mediated endocytosis in intact cells. J Cell Biol 111(6):2307–2318

    Article  CAS  Google Scholar 

  99. Anderson RGW (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  CAS  Google Scholar 

  100. Li N et al (2012) Biodistribution study of carbogenic dots in cells and in vivo for optical imaging. J Nano Res 14(10):1177–1185

    Article  CAS  Google Scholar 

  101. Geiser M et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  Google Scholar 

  102. Lajoie P, Nabi IR (2007) Regulation of raft-dependent endocytosis. J Cell Mol Med 11(4):644–653

    Article  CAS  Google Scholar 

  103. Fang YX et al (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6(1):400–409

    Article  CAS  Google Scholar 

  104. Xu Y et al (2013) Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Euro J 19(7):2276–2283

    Article  CAS  Google Scholar 

  105. Li Q et al (2010) Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phys Chem C 114(28):12062–12068

    Article  CAS  Google Scholar 

  106. Qian ZM et al (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587

    Article  CAS  Google Scholar 

  107. Song YC et al (2012) Fluorescent carbon nanodots conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells. J Mater Chem 22(25):12568–12573

    Article  CAS  Google Scholar 

  108. Shi W, Li XH, Ma HM (2012) A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angew Chem Int Ed 51(26):6432–6435

    Article  CAS  Google Scholar 

  109. Tafani M et al (2002) Regulation of intracellular pH mediates bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha. J Biol Chem 277(51):49569–49576

    Article  CAS  Google Scholar 

  110. Zhu AW et al (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem Int Ed 51(29):7185–7189

    Article  CAS  Google Scholar 

  111. Yu CM et al (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 49(4):403–405

    Article  CAS  Google Scholar 

  112. Lai CW et al (2012) Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J Mater Chem 22(29):14403–14409

    Article  CAS  Google Scholar 

  113. Yang ST et al (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309

    Article  CAS  Google Scholar 

  114. Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  CAS  Google Scholar 

  115. Li SD, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5(4):496–504

    Article  CAS  Google Scholar 

  116. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    Article  CAS  Google Scholar 

  117. Santra S et al (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun 25:3144–3146

    Article  CAS  Google Scholar 

  118. Rao KS et al (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29(33):4429–4438

    Article  CAS  Google Scholar 

  119. Cao L et al (2012) Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics 2(3):295–301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael-M. Lemberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lemberger, MM., Hirsch, T., Wegener, J. (2014). Carbon Nanodots: Synthesis, Characterization, and Bioanalytical Applications. In: Wegener, J. (eds) Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, vol 5. Springer, Cham. https://doi.org/10.1007/11663_2014_11

Download citation

Publish with us

Policies and ethics